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ABSTRACT

THE NATURE OF BUCKLING IN THIN SPHERICAL SHELLS

by Lynn Seaman

The report deals with a number of questions concerning the buckling
of thin elastic spherical shell segments unier uniform external pressure.
Both experimental and analytical studies were performed to determine the
nature of the buckling phenomenon.

The experimental work was performed on plastic shells which buck-
led elastically so that tests could be repeated. The size and position
of the buckle or dimple, effect of creep on buckling loads, importance
of the precision of clamping conditions, and the reproducibility of
buckling loads under unchanged conditions were determined. A general
discussion was given of the shape of the load-dpflection curve, the
appearance of the buckle through the post-buckling range and the
dependence of buckling pressures, anbuckling pressures and minimum
pressures on the shape parameter X . No correlation was possible
between the observed imperfections and the buckling loads.

In the analysis, the nonlinear equation for total potential
energy was derived for deep shell investigations. A formula for
deflected shape, which was similar to that seen in the tests, was
used to determine equilibrium positions for a number of shell con-
figurations. Besides the usual shape parameter X~ . a depth measure
was also necessary since the shells were not shallow. The equilibrium
positions were plotted into load-center deflection, load-average de-
flection, and energy-deflection curves. Computed buckling loads were
much too high, probably due to neglecting the mode shapes which are
small surface undulations which occur in the shell before buckling.
The equation developed is adequate in the range near buckling but needs
improvement for use in the large deflection range.

The experimental buckling loads were in a fairly narrow band midst
those of other investigators. The repeatability of the tests added
greatly to the value of the results. Analytical buckling loads were
higher than previous results, and far above the test results.
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CHAPTER 1 INTRODUCTION

With the increased use of shell type structures in architecture,

space exploration, and other projects, much interest has been evinced

in the determination of the collapse or buckling loads of these

structures. This report treats the buckling of thin elastic spherical

shell segments under the action of uniform external pressure.

The object was to deftne the nature of the buckling phenomenon.

This included the buckling load, shape of the load-deflection curve,

the effect of imperfectlons and testing conditions, and the size and

shape of the dimple which forms. Besides the buckling load (Qcr),

other pressures of interest were the load to which the shell jumped

*at buckling (q 2 ), the load to which it jumped at unbuckling (qun),

and the minimum post buckling pressure (q mn). A further purpose

was to find out if there was a difference between buckling loads

obtained from tests with displacement control and those obtained from

tests with pressure contrcl.

In the analyticl 6tudy the object was to derive equilibrium

equations for the symmetrical deformations of deep shells amd to use

these equations for buckling. The attempt was to find a deflected

shape andbuckling loads and to determine whether the equations were

adequate. With a series of equilibrium positions, load-deflection

curves could be constructed and compared with test results.

The relevant literature was reviewed in search of clues to the

most successful approach to the problem. G. A. Thurston, B. Budiansky,
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and others have Jnvestigated analytically the shape of the load-center

deflection and/or load-average deflection curves and buckling loads.

B. Budiansky and W. L. Chen have initiated the discovery of the

importance of imperfections on buckling loads. A. Kaplan and Y. C. Fung

have provided experimental knowledge about deflected shape as well as

buckling loads. T. von Karman and H. S. Tsien have suggested energy

criteria for buckling which contrast with a definition of buckling

pressure alý the first maximum point on the load-displacement curve.

The experiments were conducted on thin plastic shell segments with

depth to span ratios from 1/500 to 1/11. For the shells X, the

shape parameter, ranged from 3.5 to 25. A function of both the thick

ness to radius ratio and shell depth, this parameter has been found to

govern all shallow shell buckling phenomcna.

z o((11)

wVhere a is the shell radius, h is thickness, and 0 is one half the

opening angle of the shell.

Most of the tests were conducted by displacement control using

water pressure above and below the shell. These tests provided a

complete load-deflection curve from no load into the pust-buckling range

and back to zero load. A few tests were run with an approximation to

pressure control. In all cases the shells behaved elastically and the

tests could be repeated. Besides those topics mentioned above, the

study included the effect of buckle position and creep on the buckling

load and the variation of the pressures qcr q 2 , qun' and a with
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The results were used to check the possible validity of the energy

criterion. In all this study the reproducibility of the tests was

very helpful, permitting even an estimate of the importance of effects

which have caused so much scatter in test results.

Analytically, equilibrium positions were determined by the principle

of minimum potential energy. The energy equation wai derived with the

aid of an order of magnitude analysis and applied to finding buckling

loads for a number of configurations like the shells tested.

The experimental work is presented in Chapter 4 and the analytical

study in Chapter 5. The results from these two portions are brought

together in the Summary, Chapter 6, and compared.

9



CHAPTER 2 NOTATION

a shell radius

0 angle defining edge of shell, see Fig. 1

b variable defining buckle extent

c )I /72 ratio of extensional to bending

stiffness

linear and nonlinear components of deflection used

in an example

E modulus of elasticity

El modulus at one minute after loading

E2oEllEloEolE21,E121' 1 2 ,Eo 2 pEo4

coefficients of energy terms defined by Eq. (5-28)

£ strain

•cGr strain at buckling

strain in 0, a, Z directions or X, Y, Z directions

'53 shear strain between 0 and Z directions or X and Z

directions

E23 'E p2 shear strain between Y and Z, X and Y directions

4,, 4 i2strains in the 'iiddle surface in 0, e directions

ell, e 2 2 , e. 3 , e 3 3

linear strains corresponding to .. 3 , s e33

g creep coefficient

h thickness of shell

10



H central height of shell

•,,•.( nondimensional curvatures of the middle surface in

the 0, e directions (curvature times radius)

0 position coordinate, see Fig. 1

( variation of tangential displacement through thickness

k1 , k 2  stiffness coefficients used in an example

K(t,g) a function of creep and the time since commencement

of loading

K(T,g) a function of creep and duration of loading; it

defines the effect of creep on the buckling load

___-_ • •c In srA ,shell shape

parameter

L dimensionless volume change, Eq. (5-26)

m quantity assumed to be greater than 10 used to define

orders of magnitude

M a constraint

JV Poisson's ratio, taken as 0.3 In the analysis

WZ rotation in 9-Z plane

P q/qTf nondimensional pressure

P critical or buckling pressurecr

P2, P nondimensional pressure to which shell jumps atun

buckling and at unbuckling, respect-rely

(P cr)N normalized pressure, see Eq. (4-4)

7r total potential energy

11



Sdlmenslonless form of potentlai energy

q pressure

qT linear buckling pressure

qmin' qmax pressures of minimum and maximum points on the load-

deflection curve

qcr buckling pressure

qm definition of buckling pressure given by K. O. Friedrlchs

ql upper buckling pressure as defined by H. S. Tsien

q2 pressure to which shell jumps at buckling

(qcr• normalized buckling pressure, see Eq. (4-4)

Q dimensionless pressure, see Eq. (5-26)

radius of shell segment in plan

shell surface

0- stress

•,7, •, 0•3, stress in •, O, Z directions

O•cr critic•l stress

(•'C.•M normalized critical stress

time from beginning of loading

__i
t e g

o

Svariable of integration used in Eq. (4-3)

T time from beginning of loading to buckling

u deflection tangential te middle surface
c

u nondlmensional deflection of middle surface tangen-

tial to the middle surface (deflection/radlus)

12



U strain energy

UE, UB extensional and bending components of strain energy

U 1 , U 2 , U3 , Ub dimensionless strain energy terms, see Eq. (5-26)

0 position coordinate, see Fig. 1

v displacement component in Y direction

V volume

w deflection normal to the middle surface
c

w nondimensional deflection of the middle surface normal

to the middle surface (deflection/radius), or

displacement in the Z direction

w nondimensional linear deflection
0

wi nondimensional depth of buckle at apex of shell

(depth/radius)

W work of the external forces

variation of normal displacement through the shell

thickness

X, Y, Z rectangular coordinates

X, Y, Z surface loads in the coordinate directions

Z position coordinate, see Fig. 1

13



CHAPTER 3 HISTORY OF THE PROBLEM

The first attempts to solve the buckling problem dealt with the

linearized equations and assumed that buckling occurred when two

adjacent equilibrium positions ciuld be found for the same load. The

solution of the case with axisyi..metric deformations was given by

R. Zoelly(1) in 1915. This derivation can be seen in Timoshenko: The

_____ ofElatic tabiity(2)Theory of Elastic Stability_ _ The critical pressure is given as

(/1) (3-1)

A. Van der Neut(3) later showed that unsymmetric buckling modes did

not yield a lower critical value. Hence the linear buckling load for

a complete spherical shell was established and served to define the

important parameters in the problem. However, experimental buckling

loads were generally J to J of this linear value so other criteria and

methods of analyses were tried on the problem.

An important idea was the suggestion that the shell could jump

fiom one position on the load-displacement curve to a position with

lower or equal total potential energy if one were available. (A

possible curve of pressure versus deflection is shown in Fig. 2.)

T. von Karman and H. S. Tsien(4) announced the notion of an energy

criterion bý defining qcr = q, rin' For the critical load, K. 0. Friedrichs(5)

suggested qmf the pressure at a point on the initial part of the curve

which had the same energy level as a point on the post buckling curve.

14



T. von Karman and H. S. Tsien, K. M. Mushtari(6, and V. I

Feodosev(7) were investigators who used the eneigy or minimum load

criterion that qcr = qmin* Friedrichs used his criterion q = qm.

All five used an energy method of analysis and all except Friedrichs

analyzed a small segment of the dome as an isolated piece. Von Karman

and Tsien, the initial investigators, assumed that C 22 = 0, among

other things, but found a qmn of .316 qT ' a goou estimate of buckling

pressures. This investigation also successfully predicted the size

of the buckle. Friedrichs discarded many of the assumptions of von

Karman and Tsien, refined the equations of equilibrium, and pointed

out certain handy mathematical techniques which can be used on the

problem. His equations indicated that qmin could be negative, thus

showing the falsity of either his solution or the energy criterion.

It is suggested here that his neglect of the boundary conditions caused

occurrence of a negative load.

The first investigators were bothered by the edge conditions

on the small segment they analyzed. Feodosev overcame this problem

by specifying a deflected shape which cculd match the slope, shear,

and moment induced in the rest of the shell. He found a negative

value for qmin"

M:ishtari, using different equations for deflected shape, and

properly applying boundary conditions, found a small positive value

for qmin (28% and 16% of q T) in his two analyses. He also critically

examined the analyses of von Karman and Tsien, Friedrichs, and Feodosev

and pointed out errors in their calculations.
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In a separate paper following Friedrich's publication, H. S. Tsien(8

augmented the theories of von Karman and Friedrichs by proposing that

the shell should follow an energy def',ction curve, rather than a load-

deflection curve. He showed tnat a negative value of qcr would be obtained

from the von Karman criterion and that an additional restriction had to

be made. Beside ti.e condition that the totai potential energy must be

the sgme before and after the jump, he required that either the load

must be the same (constant pressure case) or the volume enclosed under

the shell must not change (constant volume case). In his analyses Tsien

obtained different critical loads in the two cases, qcr for the constant

pressure case being about half that for constant volume. A number of

tests performed under his direction verified his results for constant

volume and one test gave some verification for his results for constant

pressure.

The energy criteria have generally been applied only to deep shells

or to shells with v at least 40 or greater. The reason for this is that

the ainalyses have been performed on the region of the shell where the

dimple should form, neglecting the rest of the she] , and the total

angle of the dimple is 70 or 80

These criteria predict some possible load deflection path which

is lower than the route over the iuaximum point of the curve. The

peak of the curve and this the buckling load may be reduced by

imperfections or clamping conditions. Since the energy criteria can

be used to find a minimum possible buckling load, the criteria should

be useful in predicting the effect of imperfect conditions.

16



The energy criteria and the analyses based on them lead to a

number of effects, some of which can be verified experimentally.

The criteria require the presence of adequate external energy to

produce a jump and thus it seems that buckling could occur at a range

of pressures and not be very reproducible. Presumably the critical

loads given in the analyses were minimum values at which kuckling

could occurand therefore test results should be equal to or above

these theoretical values. Th- difference in buckling loads predicted

for constant volume and constant pressure tests is probably the most

significant effect and the most readily verified. It is significant

because in practical situations of buckling under wind or snow loading,

the failure is with nearly constant pressure conditions. Yet the tests

of Kaplan and Fung(9), Homewood, Brine and Johnson(i0), aid most of the

tests of Tsien were made with volume control. If it is a fact that

buckling pressures with constant pressure tests are much lower than

for constant volume conditions, this is imporLant to know.

A number of investigators have attempted to solve the differential

equations of equilibrium for the shell segment and have usually considered

that the buckling load was the maximum point on the load-deflection curve.

Cylindrical coordinates have been employed and the analysis has been

restricted to fairly shallow shells (rise to span less than 1/8). The

technique used has been to expand the dependent variables in terms of

a power series of the center deflection to thickness ratio. Then the

coefficients of the series are required to satisfy the governing

differential equations. A. Kaplan and Y. C. Fung R. R. Archer(II)

17



and H. J. Weinitschke 12a) have used variations on this method and found

it gives results near test values only for very shallow shells. It can

be pointed out from the analytical results of Weinitschke and Archer

that, with enough terms in the series, an accurate value for critical

load can be found. (That is, accurate theoretically, but not necessarily

near experimental results) Therefore, it is apparent that the deflected

shape is a series in which an extremely large number of terms is important.

The energy or variational approach has been used with the deflection

expanded in a power series. With this m1ethod the investigators have

found results only up to A = 7. G. P. R. von Willich(13) derived the

necessary equations and found results using only one parameter.

W. L. Chen (14) used the same technique and two parameters. A. B. Caseman(15)

extended the investigation to three parameters.

Chen also investigated the effect due to various types of symmetric

imperfections such as grooves at midheight in the shell. His results

show that the effect of an imperfection may be either positive or

negative depending on the magnitude of the imprefection and the depth

of the shell. Hence a correlation between imperfections and buckling

loads is rather complex.

In dealing with shallow shells, many investigators have replaced

the spherical segment by a paraboloid with the same height and plan

dimensions. The approximation has the effect of introducing a symmetric

imperfection with a magnitude of about .002(h 2 /a) X 4 at midheight on

the shell. It can be seen from the formula that the error increases

rapidly with ?.

18



H. B. Keller and E. L. Reiss 16b) have used a finite difference

approach fairly successfully in the shallow shell range to define qcr"

They also found q 2 and qm, the intermediate value suggested by

Friedrichs.

Four recent attempts have been eminently successful in determining

buckling loads for a large range of ?. These are of particular impor-4

tance since they essentially agree on critical loads. Weinitschke (12b)

augmented his earlier power series approach by expanding the series from

both the center and edge and matching the terms at an interior point.

This decreased the convergence problem a great deal because both series

were shorter than a single series expanded about the apex, and the

accuracy was correspondingly higher. G. A. Thurston(17) used a numerical

integration technique to find solutions at various points up toA= 9.

B. Budiansky(18) transformed the governing differential equations into

two simultaneous integral equations and found good results up toak= 13.

With the energy method Casev"ýn found results up toA= 7. Since these

four methods are essentially different from each other, yet their results

agree very well, it is reazonable to conclude that the buckling loads

for the perfect shell under symmetric deformation have been determined

in the shallow range. The buckling loads found in these analyses are

plotted in Fig. 11.

It may be mentioned that all the deflected shapes used in the

preceding analyses have been based purely on mathematical considerations,

not on the appearance of the shell surfade during loading.

19



Budiansky also considered thm possibility of iceutr-a ipe-fcvnS

and found a significat decrease in load for large =mperfections. The

central imperfection is deceptive rince it implies a change in radius

as well as an axisymmetric groove at midheight. If the central height

is assumed to determine radius, then the imperfections of Chen and

Budiansky are found to be quite similar. In fact, b, the imperfection

magnitude of Chen is 3/16(EH), where 6H is the error in central height

in Budiansky's notation. The effect of simply an error in height

(and therefore in radius) can be found from the linear buckling load,

rewritten as follows

.21/3(i--V,) ,:

where r is the radius of the shell in plan and H is the central height

of the shell segment. A small change, LAH, in H gives a corresponding

change' in qT of

SqT =2

Therefore

Al -2A I ___ll (3-2)

and e is the nondimensional error in central height according to

Budiansky. He obtained reductions of 10% to 30% in buckling load for

,= 0.05. A decrease of 10% caused merely by the change in radius

could be found from Eq. (3-2). In addition, qcr is a function of

- as well as of the variables in q T and ; in turn is a function of

20



/1'•. Therefore a change in H should shift the curve of qcr versus

; (see Fig. 11) down by --- qr and to thr right by • -- A . This

predictable effect seems to be verified by the plots of buckling

load given by Budiansky (and not reproduced herein).

Budiansky and Weinttschke have suggested that probably the

consideration of unsymmetrical deformations will help to provide critical

pressures closer to experimental values. Weinitschke stated in reference

12b that the circumferential stresses which he obtained were sometimes

as high as twice the meridional stresses, thus suggesting the possibility

of nonaxisymmetric buckling. A simple linear analysis by Rabotnov(19)

showed that buckling should occur when either of the two stresses reached

a critical value.

Extensive sets of tests have been performed by Kaplan and Fung;

Tsien; Homewood, Brine, and Johnson; and K. Kloppel and 0. Jungbluth(20)

The Luckling loads obtained by these investigators are shown in Fig.

12. Kaplan and Fung performed an essential service by carefully testing

a number of magnesium shells with ;k values between 4 and 10. They not

only found buckling loads, but also measured initial imperfections ana

deflected shapes as the shell approached buckling. The measurements

were plotted to show that during loading (before buckling) the shell

could form either a central dip, or a .yunmetric furrow about the shell

between center and edge, or both dip and furrow, or F)me unsymmetric

shape. Furthermore, the particular form depended on the value of •,

the more complex shapes occurring with the larger •.

21



These different deflection patterns have usually been referred to

as modes of deflection and appear quite similar to vibration modes.

Reiss, Greenberg, and Keller6 Weinitschke, and Budiansky have also

mentioned the changes of mode shapes. As X is varied the mode seems

to change at about k= 3.2, 5.3, 8.8, 16, 25, . . . (These are equal

logarithmic steps). The first value of ;k is about the minimum at which

buckling occurs. Between 3.2 and 5.3 a central dip forms during loading.

Between 5.3 and 8.8 the maximum deflection may occur in a symmetric

furrow about the shell. Beyond this point there is confusion as to

whether the mode is symmetric or unsymmetric, and the changeover

points are not well defined.

The tests of Tsien were for shells in a deeper range, fromk= 15

to 25 and the buckling loads were equal to or slightly above those of

Kaplan and Fung.

Kloppel and Jungbluth tested a large number of ribbed domes to

find the effect of stiffeners on buckling strength. Their shells

were made by welding a series of meridional and circumferential

ribs to a thin shell dome so that the structure became a composite of

thin shell and frame types. There is no theoretically predicted

buckling load for such a structure so it was assumed to be a uniform

shell with some effective thickness.

An expression which can be used for this effective thickness is

22



where S is an average extensional stiffness (Eh for a uniform shell)
E

and SB is the average bending stiffness 6h).

Kloppel and Jungbluth tried many combinations of rib sizes and

distributions yet their buckling loads were rather close together as

seen in Figure 12. Their procedure for finding an effective thickness

(which is similar to Eq. 3-3) was somewhat validated by this lack of

dispersion. Tests were performed under air pressure so that when failure

occurred it was sudden and complete. Many of the specimens exhibited

local failure before the snap-through tock place. It may be postulated

that local failure occurred in all cases, but it was only observed in

those where buckling did not occur immediately thereafter.

The buckling loads of Kloppel and Jungbluth are considerably lower

than those of Tsien in the same range and this fact may be explained

partially by the occurrence of local buckling and partially by the

assumed equivalence of frame and uniform shells. Since many dome

structures are actually composite, the work of these two investigators

has a great deal of practical significance.

Quite recently R. H. Homewood, A. C. Brine, and A. E. Johnson(10)

made a series of tests with A from 6 to 20, thus connecting the

experimental ranges of Kaplan and Fung and Tsien. Their results agreed

well with Kaplan and Fung but were considerably below the buckling

loads of Tsien. Two of their shells unbuckled when the pressure was

removed showing that the material had not been stressed beyond the

elastic range. These two were subsequently re-buckled and the second
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buckling loads were nearly equal to the critical loads obtained the

first time. Hence some reproducibility of buckling loads could be

deduced from these tests.

The combined test results show a fairly large scatter, particularly

between buckling loads of different investigators. The dispersion between

test results of separate experirenters may be attributed to differences

in shell material, test apparatus and procedures, clamping conditions,

and the range of ;I used.

The analyses and tests performed t,.us far have been adequate to

solve a few problems of buckling and to raise a myriad of questions.

From the tests it can be predicted that qcr is between 15% and 80%

of the linear buckling pressure. The shell surface does not remain

uniform during loading but forms waves and the number of waves is

partially predictable. A curve of buckling pressure versus A has

been found analytically for symmetric deformaticas of shallow shells,

but this pressure does not correspond well with test results. The

convergence of iteration, perturbation, and finite difference techniques

often is not adequate near the buckling point. This suggests that the

correct deflection shape is a power series with a large number of

important terms. Imperfections have been considered both analytically

and experimentally and so far the only indication is that the effect

ol imperfections is rather complex.
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The scatter in test results and the disagreement between

theoretical and experimental buckling loads prompted the tuthor to

consider a number of questions. The investigations of this report were

designed to provide some answers for these problems. Some of the

pertinent questions were the following:

1. Are imperfections important? What is the effect of size,

shape and position of imperfections on buckling?

2. Are clamping conditions important?

3. Are buckling deformations symmetric?

4. Are buckling loads reproducible?

5. Is an energy criterion valid so that the critical loads

depend on the ambient energy level?

6. What is the position of the dimple which forms at buckling

and does the position affect the critical load?

7. Does the type of loading -- constant volume or constant

pressure -- affect the buckling pressure?

8. Is buckling precipitated by yielding or local failure in

cases where qcr is below the analytically predicted pressure?

25



CHAPTER 4 EXPERIMENTAL STUDY

A Introduction

The purpose of this experimental project was to investigate

the nature of buckling of thin, clamped, spherical shells under uniform

pressure. Under this general topic the following specific items were

considered:

a. Shape of the load-displacement curve from no load to post-

buckling and the rebound or unbuckling curve.

b. Size, shape, and position of the buckle which formed.

c. Reproducibility of buckling loads.

d. Eifect of shell imperfections or clamping conditions on

the load-displacement curve and the buckling load.

e. Effect of creep on the buckling load.

Most of the tests were performed with control of the volume

enclosed under the shell and were therefore so-called constant volume

tests. This name comes from the fact that the enclosed volume does

not change during buckling. Such a restriction can be accomplished by

having an incompressible fluid filling the space under the shell. This

type of test was chosen so that a load-displacement curve could be

determined since both pressure and a measure of deflection were known

at any time. The change in enclosed volume is proportional to the

change in average deflection of the shell under an increment of

pressure. The constant volume test was also chosen so that the

buckling process could be partially controlled and forced to occur
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gradually. In addition it seemed desirable to have either constant

pressure or constant volume conditions so that the results could be

applied to the discussion of the energy criterion of Tsien. (In a

constant pressure test, the pressure remains constant during buckling.)

In a practical situation the conditions often approximate those

of a constant pressure test. Consider a hemispherical structure under

a wind loading. If buckling occurs and a dimple forms, the internal

air may be compressed and produce some small resistance to volume change.

Thus the buckling action, although mainly a constant pressure situation,

is really somewhere between constant pressure and constant volume.

Therefore it was necessary to make some constant pressure tests. The

latter tests were made witl the same conditions as the constant volume

tests so that a relation between buckling loads in the two cases might

be found. With such a relation, buckling loads in practical situations

could be predicted from the results of constant volume tests.

In the usual structure pressure is not uniformly distributed over

the shell but may have a variety of patterns. However, the rate of

change of pressure over a shell surface is usually small and buckling

would probably occur under a region of maximum pressure. If only the

small segment which forms a buckle is considered, there is nearly a

uniform pressure applied. Therefore, it is reasonable to test using

a uniform pressure. Also the uniform case is easier to reproduce and

easier to compE.re with other test results. A uniform pressure was

therefore used in these tests.
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A plastic was chosen as the shell material rather than aluminum or

other light metals which have usually been used. There were a number

of reasons for preferring a plastic material. A plastic was relatively

inexpensive and easy to form by vacuum drawing; it had reasonably small

thickness variation; and there was no strain-hardening nor residual

stresses developed during the forming operation,. It was desired to test

entirely in the elastic range of the material so that each shell could

be buckled many times and not cause material failure or yielding. The

large ratio of yield stress to modulus of elasticity for the plastic

allowed the large deformations of buckling to occur while the strains

remained elastic. An added benefit was that the pressures used for test-

ing the plastic shells were 1/20 to 1/60 of that for comparable metallic

shells. With the lower pressures, the equipment was simpler, less

expensive, and more convenient to use. One difficulty with the plastic

material was its creep characteristic. The nature of this creep was

investigated so tha. test results could be reported in a uniform and

meaningful manner and extended to apply to non-creeping materials. The

particular plastic chosen was a polyvinyl chloride which was available

in thicknesses from 0.010" to 0.080".

As mentioned in Chapter 3, the form of deflection seems to change

at certain values of X. To study the effect of the mode changes on

critical loads, it wes decided to test a number of shells with A values

at 3.2, 5.3, 8.8, 16, and 25, that is, at the supposed changeover points.

As a check, shells with A= 7.0, 12 and 20 were also used. To study

reproducibility of loads and variations of loads between shells, a large
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number of shells were formed for X= 7.0 and 12. In Fig. 13 it is

apparent that the tests are grouped about certain values of A . That

the results are in groups instead of a single line shows that the desired

1's were only achieved approximately. Procedures described below were

used to find the dimensions of the shells after forming and these dimen-

sions were used in computing the X Aor each shell. After choosing X's,

it was necessary to select values of thickness and radius which would

give the desired Ns, This choice was limi ted by specifying that the

buckling pressure must be greater than 0.05psi. and that the sum of

bending and extensional stress at the edge must be less than 500 psi

at q = j q T From Fig. 3 it is apparent that these restrictions left

only a narrow region for acceptable combinations of h and a. The

possibility was considered that X was not the only necessary shape

parameter. Consequently, where possible alternate combinations of h

and a were made for a single A . The small circles in Fig. 3 show the

combinations which were chosen. For each set several shells were formed

and tested. In the experiments a total of 39 shells were used.

Due to the presence of creep the test procedures are quite important

and are described in detail. The test results are discussed with a view

to answering some of the questions which have been raised by earlier

tests and analyses and which are mentioned in Chapter 3.
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B Preparatory Considerations

- Shell Forming -

The shell segments were formed from polyvinyl chloride (P.V.C.)

sheets by a process known as vacuum drawing. In this method a single

mold, the female, was required. The plastic sheet was heated, drawn into

the mold, and allowed to cool in the new shape.

Since the shells were to have five different radii -- 15", 25",

35", 45", and 80" -- as shown in Fig. 3, five molds were needed. These

molds were made from aluminum plate with a thickness at least J" greater

than the height of the shell to be formed. In Fig. 4A there is a sketch

c., one. auch mold. Aluminum is relatively easy to machine but has better

surface and is stronger than many of the other possible usld materials

such as wood or graphite. A cavity with one of the desired radii was

machined ib the plate and a 1/16" diameter hole was drilled in the center

of the cavity for access to the vacuum.

The rest of the forming equipment can be seen in Fig. 4A also.

The wooden clamping rings held the sheet in place during forming. The

large cylinder was needed to provide a vacuum chamber and to hold the

sheet slightly above the mold so that the mold was insulated while the

sheet was being heated. The cylinder was located in a large oven and

a line to a vacuum pump was connected to control pressure in the

cylinder.

The forming process began with the cutting from a polyvinyl

chloride sheet of a circular piece with the diameter of the wooden
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clamping rings. The piece was rinsed in hot running water to remove

grease, dust, and other foreign particles. Wiping the sheet clean

was not feasible due to electrostatic effects. yet cleaning was

necessary or bumps would appear during forming. The piece was clamped

into the wooden rings with negator clamps a:-d placed in the oven atop

the cylinder as shown in the lower sketch of Fig. 4A. With the sheet

to be formed in place, the oven was heated to 1500 - 170 0 C. The sheet

seemed to be properly heated when the steam from the rinsing water

had disappeared from it. Then the vacuum of one atmosphere was applied

and the sheet immediatelydropped %o fit the mold. The heat was

turned off and the oven opened to speed the cooling. About one minute

was allowed for anneailing and then cold water was poured in to fill

the cavity in the center and the gutter which formed Just outside the

mold (see the second sketch in Fig. 4A). The newly formed shell was

allowed to cool under full vacuum for 5 to 15 minutes. The longer

period of cooling was required for the sheets 0.080" thick while the

thinnest sheets needed only a very short time. After the cooling process

the vacuum was turned off and the shell was lifted out of the mold.

Then shell and rings were dashed together into a vat of cool water so

that the shell could cool uniformly, and the rings were removed. At

this time the mold was also taken out of the oven so that it would be

cool for the next forming.

The finished shell was then examined to find any visible imperfections

caused by the presence of steam, etc. If the fault was in the forming,

the cycle could be restarted by rinsing, reclamping and heating as before.
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On heating, the shell became planar again and was ready for redrawing.

If the shell passed inspection, the excess edge material was trimmed

off so that only 3/4" of flat rim remained and the specimen was ready

for testing (see Fig. 4A).

The vacuum drawing process described above gradually evolved

during the production of the shells for this research. Hence some of

the imperfections in the first shells produced were eliminated in later

production. The rim slope (see Fig. 7) was caused by too short a cooling

time under vacuum and/or not enough heat. Watermarks (shallow bumps)

were caused by trapped steam. Either of these imperfections could have

been corrected by reheating and redrawing.

- Shell Shape Determination -

After forming the shells it was necessary to find the thickness

and radius to which the shell actually conformed. Thicknesses were

read to the nearest ten thousandth of an inch with an Ames Dial gage

at five positions in the shell - one at the apex of the shell, and

the other four at points halfway between the apex and the edge. An

average of the five readings was taken as the shell thickness. The

thickness variation was about 1% except for the very thin shells

where variations were 10% to 12%.

The radius of the spherical shell can be found if the rise in the

center is known. The rise was measured to the nearest thousandth of an
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inch, Radius was then computed from the formula

(4-1)
2

where H is the central rise of the shell, and r = 5.25", the radius of

the supported circular edge as seen in plan. Unfortunately some of the

rims of the shells were not flat but had a slope either upward or

downward as shown in Fig. 7. The radius determinations for these shells

were nade while the shells were clamped into the testing cylinders in

order to obtain the "a- tested" radius if possible.

- Creep Effect on Buckling -

The creep behavior of the plastic material used in the experiments

is similar to that found in most plastics. The total creep strain at

low stress levels was fairly small, around 5% (at room temperature).

The creep rate was very high so that creeping was essenti'lly complete

in twenty minutes. The creep became nonlinear for stresses over a few

thousand psi, that is, the creep rate became a function of stress level

as well as of time. The creep rate varied somewhat with temperature

and humidity. At moderate stresses the creep could be termed elastic

since the strain was completeiy recovered after some time. In fact,

the unloading curve matched the loading curve.

For the polyvinylchloride material used in the experiments the

following formula was found to describe the stress-strain relation
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adequately:

(-C Ej, 3(4-2)

In order that6= 0 at t = 0, to was defined by

it}/r a 0 o

This makes to extremely small so that it can be neglected for most

purposes but :.t makes the evaluations of the integrals more reasonable.

g is a creep coefficient and E, is the modulus at one minute after

loading.

In order to find the effect of creep on the critical load, certain

assumptions were made. As some investigators have suggested, buckling

occurs when a critical strain is reached at some point in the structure

and does not depend directly.on the sttess level. In the following

derivation the strain was assumed to be a linear function of displacement.

ThMs coidition is reasonably correct to the point of buckling, after

which nonlinearities become important.

The applied load may not be constant but vary with time I'T. In

this case Eq. (4-2) is still applic~able but the stress and strain

must be replaced by the infinitesimal quantities dC and d "-. A

general treatment of creep strain relations is available in reference

27. As shown there, in a short time interval from 'Tto 7"'+ Wethe

stress is changed by j7 At some later time t, the load e-40has

been on for a time t - 1. The increment of strain caused by this

load can be seen from Eq. (4-2) to be
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1- (4-3)

In this equation 7'can assume any value from 0 to t. The total

strain at the critical point in the shell at any time t can be found

by integrating the preceding equation with respect to 7' from 'r-0

to ' = t.

If the load is applied at a constant rate, then where T is

the time at buckling.

e'Y K9,)

When t = T, the time at buckling, £(t) = ,cr and the critical

stress is
rc = 6, ,. T, 9

where = Y )

A normalized stress can be defined as

The normalized stress is a function only of El and jcr' neither of

which is a function of the duration of loading T, or the creep coefficient

g; therefore, (cr ) is not a function of T or g. If stress is

cr N
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proportional to laod, then normalized buckling pressures can be similarly

def i ned.

() 3)

P is a nondimensional form of buckling pressure defined as the criticalcr

pressure, q cr' divided by the linear buckling load, qT"

In equation (4-4), qcr is the actual pressure measured dur ng the

test and (q cr)N can be interpreted as the pressure for a hypothetical

test withka duration of 2.728 minutes; that is, for K(T,g) A

1.000-/ 2.72-8 • 1000 (since to can be neglected). If the theory is

correct, the normalized pressure, like the normalized stress, is not

a function of either T or g. Hence, this value of pressure can be

compared to the buckling loads for noncreeping materials for which g

is zero.

Since creep adds a certain amount of nonlinearity, it is of

interest to find the effect of creep on the shape of the load-deflection

curve up to the point of buckling. An estimate of this effect was

obtained using the constants mentioned previously and a T of twenty

minutes. Then points on the stress-strain curve were obtained for

various values of t from the equation

.0,,) (4-5)

A linear extrapolation of the initial portion of the curve was made to

obtain a stress at the abscissa of critical strain. This value from the

linear extrapolation was then compared with the critical stress obtained from
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the equation. The difference in this case was only 0.3%. Therefore

it is fairly safe to say that creep did not account for nonlinearities

found in the load-deflection curves.

- Modulus Determination -

In order to relate these test results to other materials, some

procedure had to be found for evaluating the moduius of elasticity.

Simple tensile tests were run on samples of each sheet using SR-4

strain gages and a dead weight. Beam tests were also run in an attempt

to determine the compressive modulus in case it differed from the tensile.

Both sets of tests were conducted on 6t' by li" spezimens. In the beam

tests the specimens were supported as simple beams with a load at the

midpoints and the end rotations were measured by the motion of a wire

fixed to the beam near the end. Although the beam deflections were

extremelylarge, the relation between load and end rotation was essentially

linear. In Appendix B it is shown that the end rotation equals

where V is the end rotation in the linear theory. Hence for a rotation

of 60 or 0.1 radians, which was about the mnaximum used, the nonlinear

correction was less than 0.2%. Because of the presence of creep, the

modulus changeC with time. It was decided to use El, the modulus at

one minute after loading. El is defined by the creep equation
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Since to is negligible, t = 1 minute gives • =- and there is no creep5;
correction required for the determination of the modulus. The beam

tests gave the most uniform results for modulus, the average value being

498,000 psi. A summary of these determinations is in Appendix B.

The tensile tests were not so reliable due to the presence of

the strain gages. On such small specimens the stiffness of the gage

produced an important effect on the strains and hence on the modulus

of elasticity. However the electric strain gages could be read with

more precision than the beam rotations. Therefore the gages were

valuable in determining creep which is a small variation on the total

strain. Hence the creep equation (4-2) and creep coefficient, g, are

based on the tensile tests mainly. Results from these creep and

modulus tests are also given in Appendix B.
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C Testing

- Test Apparatus -

The main tests were constant volume tests which required the presence

of an incompressible fluid in a chamber below the shell (sbhll convex

up). Water was selected as the most ccnvenLeiht fluid for this purpose.

But with water below and air above the net pressure on the shell would

be hydrostatic and vary over the shell surfacv. Therefore there had to

be a water chamber above the shell also. Tests were run by applying

a displacement and measuring the pressure taken by the shell. Hence

the required apparatus was a set of water tight chambers between which

te shell could be clamped, a device for withdrawing water from the

lower chamber, and a system for measuring pressures above and below the

shell.

The completed equipment can be seen in Fig. 4. The lower chamber

consisted of a heavy pipe section bolted to a base plate. These two

pieces were rather heavy so that they would not alter the enclosed

volume much as the pressures changed, The upper chamber was made of

plexiglas and allowed observation of the shell, the buckles, and bub-

bles which were trapped in the chambers. Holes for inlets and out-

lets were made at th7ee plates around the lower chamber. These were

necessary in order to allow the water to come in and the air bubbles

to be forced out, It was found convenient to use water from a large

jug which maintained a nearly constant water temperature so that the

volume would not change due to temperature fl!ictuations.
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The tubing which connected the reservoirs, chambers, and mano-

meters was of transparent plastic which allowed observation of bubbles

in the line. When bubbles were present,the manometer readings were

very unsteady since each motion of the bubbles seemed to upset the

equilibrium,'c the gages, too.

The manometers were capillary tubes with an inside diameter of

1.8 mm. These were used so that when the pressure changed, the change

in the amount of liquid in the tube would not greatly alter the total

volume under the shell. The tubes for registering upper and lower

pressure had equal diameters so that the capillary rise (i" to 1")

would be the same and no correction was required. The capillary

rise was quite a bit larger in pure water than in impure and so small

amounts of liquid soap were added in both tubes to make certain the

water was impure. The soap reduced wall friction between glass and

water and so also produced freer and more accurate motion of the

water.

The faucet for allowing withdrawal of water from the lower chamber

was at first a high vacuum glass valve. Later the valve was replaced

by a short rubber tube with a small clamp on it. With the clamp there

was good control of the rate at which water drops came out so that a

desired speed of volume change could be maintained.

The rubber gaskets used in clamping the shell may have caused

some inaccuracies. The narrow rim all around each shell was supposed

to be clamped against all motion. However, the thick gaskets in the
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clamping rings probably allowed some outward displacement and rotation

of the edges. Rough calculations show that the amount of displacement

would be quite small compared to the total shortening of a meridian and

is therefore not too important as a cause for snapping through. The

edge rotation would not approach that for the simply supported case,

yet the theoretical buckling load for the latter case is at least 3/4ths

of that for the fixed condition according to the calculations of

Weinitschke(12b)

- Test Procedure -

There were two basically different types of tests used. The

constant volume test was the most important and it was of the con-

trolled displacement type. It proceeded much like an ordinary tensile

test. A certain strain or displacement was applied to the shell and

the pressure which was required to make the shell stay in that position

was read. The other type, the constant pressure test, was carried out

by increasing the load until buckling occurred and hence the control

wab on the load, not on the displacement.

Preparation for the constant volume tests was commenced by placing

the shell between the clamping rings of the test cylinders and bolting

them together, as shown in Fig. 4. Then the chambers were filled with

water, beginning with the lower chamber. The tube to the top chamber

was connected to the small elevated reservoir and the tube to the lower

chamber was connected to the taller capillary tube as shown in Fig. 4.
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Equal heights were obtained in the upper and lower chamber manometers

by letting water either in or out of the lower chamber through the faucet.

To force water in, the reversing standpipe shown in Fig. 4 was attached

to the valve and filed with water. With equal pressure above and below

the shell, the shell was sustaining a net load of zero.

Testing began by opening the faucet and allowing a number of

drops of water to come out from the lower chamber. The shell had to

move downward in order to keep in contact with the water and thus the

displacement was applied to the shell. Of course, a certain pressure

was required to hold the shell in the deflected shape and this pres-

sure was given by the difference between pressures in the upper and

lower chambers. Hence the load on the shell could be found from the

readings of the two mAnometers. So the normal procedure was to open

the tap, let out a number of drops, close the tap, read manometers,

and then repeat. The information recorded in each cycle was the

number of drops and both manometer readings. At buckling the height

in the lower chamber manometer increased suddenly and readings were

taken both before and after the jump. Then the usual procedure was

continued on to some point in the post-buckling range. For deep

shells the q2, the pressure to which the shell jumped at buckling,

and qmin' the pressure at the minimum point of the load-deflection

curve (see Fig. 2), coincided and so the test was often halted just

after buckling. For shallower shells, the curve looked more like the

one in Figure 2 and the test was continued until qmin had been passed.

See Figure 10 for some typical load-displacement curves.
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After the test the total amount of wn.ter taken out during the

test was determined by weighing. This information was used to associate

a volume change with each pressure reading b:" apportioning the total

change according to the total drops up to each point. For plotting

load versus volume change curves, it was necessary only to plot the

pressure versus the cumulative number of drops. The drops were found

to be somewhat nonuniform in size but not enough to make the initial

portion of the load-deflection curve appear nonlinear. Therefore,

the number of drops was probably an adequately reliable measure of

volume change.

In order to unbuckle the shell the reversing column was attached

to the faucet. Then the normal testing procedure was to open the tap,

allow a certain amount of water to run into the lower chamber, close

the tap, and read the heights of manometers and reversing colunn. The

difference between the current reversing column reading and the previous

one gave the volume change because the column was calibrated. The

procedure was repeated until some point on the initial portion of the

load-deflection curve was reached.

With the presence of creep, time became a factor in the test.

The steps of the constant volume test enumerated below were adopted to

standardize the effect of time.

a. The pressures in the water manometers and the time were

recorded.

b. The tap was opened to allow a number of drops (say 10) to

escane from the lower chamber and the number was recorded.
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C. Again the pressures in the gages were read and noted. At

some specified time (say 30 seconds) after the last time the tap was

opened, step b was repeated. By using an equal time interval during

each cycle, the loading rate was made to be constant stepwise.

d. At buckling the tap was immediately turned off and the time,

pressure readings, and number of drops in the last cycle were recorded.

The remainder of the experiment proceeded without being timed.

e. Steps b and c were repeated until the desired point on the

post-buckling curve had been reached.

The loading process was then reversed by attaching the reversing

column to the tap and filling it with water. In the rebound test a

procedure similar to that above was followed.

a. The pressures in the water manometers and the height of the

reversing column were read and recorded.

b. The tap was opened to allow a number of centimeters of water

from the column to enter the lower chamber.

c. Steps a and b were repeated until the shell had unbuckled

and the pressure was reducing along the initial portion of the load-

deflection curve. See Fig. 10 for some typical rebound curves.

The preceding tests give a complete curve of load versus displace-

a.ent measured in terms ofthe change in volume under the shell. After

the nature of this curve was known for a shell or a group of similar

shells, the only things that were required of further tests were certain

significant pressures on the curve such as qcr' q 2 , q U' and qmin' The

following modified procedure gave these impt,-tant pressures and was used

for a majority of the tests.
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a, The time was noted and the tap was opened.

b. A uniform drop rate was maintained. This was done visually

for short buckling times, but for long tests, the rate was kept even

by passing an equal number of drops each minute.

C. While keeping a uniform drop rate the pressure in the lower

chamber manometer was observed continuously.

d. When buckling occurred, the faucet was shut off, and the

time and the reading of the lower manometer prior to buckling were

recorded. The pressure in the upper chamber manometer was read and

recorded. At one minute after buckling the height of the lower

manometer was read again. This latter reading was taken to find the

so called lower buckling pressure, q2 , Just after buckling the height

in the lower manometer was changing rather rapidly due to creep so the

specification of a one minute wait was necessary to make the readings

uniform.

e. The faucet was turned on again and the height of the lower

manometer was observed. If the height increased and then decreased

(pressure on the shell decreased and then increased) then a reading

was taken at the maximum to give q min' Otherwise it was assumed that

q 2 = qmin*

f. The reversing column was used as before to force water back

into the lower chamber. The tap was turned on and the lower chamber

manometer was observed.
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g. The warning for the onset of unbuckling was a gradually

accelerated decrease in gage height. Near the time of unbuckling the

tap was turned off and the shell was allowed to unbuckle without

outside influence.

h. At one minute after unbuckling, the two gage readings were

taken and recorded. The creep in gage height was generally not large

in this case but still noticeable.

After the pressures in the two chambers were equalized following

the test, a period of 20 minutes was allowed to elapse before the next

test was commenced. This wait time seemed necessary so that the shell

would have essentially no memory (due to creep) of the previous test.

In order to check the reproducibility of buckling loads, a series

of tests was run without removing the shell from the testing cylinderq.

Then the shell was taken out and replaced in the test chambers and

tested again. This procedure also served to demonstrate the effect

of precision in clamping the shell in position.

After a series of constant volume tests had been run on some of

the shells, the water was emptied out and a "constant pressure" test

was run. Actually the volume of air was not great enough to allow

for full collapse of the shell under the same pressure, but the test

approximated constant pressure conditions to some degree. This degree

may be estimated from the fact that a lower buckling load was obtained

and that the buckle was about the same size as that for constant volume

tests. The main distinction then was that the pressure was applied,
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not the displacement. In these testq a U tube manometer and pressure

inlet were both attached to the upper chamber. The lower chamber was

open to the atmosphere. Pressure was built up gradually and the

manometer was watched continuously. When buckling occurred, the

maximum manometer height and duration of the test were recorded.
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D Experimental Results

- General Discussion -

The data from both constant volume and constant pressure tests

are given in Table 1 of Appendix A. The tests reported were made

in accordance with the procedures just described. Individual tests

are not reported, only series of tests which were made under the same

conditions. For instance "a" is the designation for a series of

constant volume tests and "a(air)" is a series of constant pres;sure

tests run under the same clamping conditions as the constant volume

tests. The values of P in each series were normalized accordingcr

to Eq. (4-4) and then averaged. This procedure removed the effect

of different lengths of time in testing. Under series "a" were

reported the averaged values of (P cr)n, P2 , Pun and the position of

the buckle whicn formed. Notice that during any series the buckle

occurred in the same position. The one exception to thts is the

second series of tests on number 35.

The buckle and imperfection positions were given as:

c center of shell

n near center

m midway between center and edge

e adjacent to edge

For each shell the values of q , a/h, and 0( are listed. This is

followed by a brief description of observed imperfections. First was

the slope of the rim of the shell. If the edge strip curled up (with
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the shell convex up) after forming L positive slope was indicated.

Next was the estimate of the height of bumps and their location on

the shell.

From any series of tests run under the same conditions, it was

found that the value of qcr was nearly the same in all tests. When

the buckling pressures were normalized according to Eq. (4-4) to

account for creep, then the variations were less than 1% w'thin any

one series. With such small variations it was possible to conclude

that buckling pressures were reproducible and dependent on conditions

which were actually unvaried during a series of tests. Between series

of tests there was much more spread in the buckling loads, but the

variations were still of the order of 5 or 10%, which is quite

reasonable. The greatest variations occurred between different shells

with supposedly the same shape. In a number of cases the critical

load for one shell was 50% of that for another with the identical gross

dimensions. A number of test series were made with large variations

in test durations in order to check on the creep correction, Eq. (4-4).

One such series is plotted in Fig. 6 and from the correlation shown

there between theory and experiment, it is apparent that the correction

is of about the right magnitude.

The buckling pressures from the air pressure tests averaged

about 3% higher than those from constant volume tests. This comparison

is made between results from experiments all made without changing

clamping conditions. That the conditions were quite constant between
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the two types of tests is shown by the fact that the buckle formed in

the same position in both cases. No explanation has been found for the

increase in load under constant pressure conditions.

The value of A for the shells were chosen at the points where

the modes of deflected shape were expected to change, and at intermediate

points. The buckle position does not seem to depend noticeably on

whether or not k is at a changeover point or not (Fig. 9a). Neither

is there any particular difference in buckling pressures between shells

in the two groups.

The nature of q2, the pressure to which the shell jumped at buckling,

and qun' the pressure found at unbuckling, contrasted markedly with that

of q.cr (q 2 and qun are from constant volume tests only.) The spread

between q 2 and qun was not very great as shown in Fig. 13. In fact it

was reasonable to draw in the trend lines shown. In view of this uniformity

of averaged results, it was surprising to find that q2 and q wereun

actually not very reproducible under the same conditions. For instance,

in a single test series in which there was little variation in qcr'

the spread in values of q2 might be 10% or even 30%. The variations

between values of q2 in different series was not greater than the

variation within the series. Apparently all the conditions which

affect the value of q2 and qun were not under control. No corrections

were made for creep and that may have been a partial cause of the

variations.
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For the deep shells there was a long, level portion in the post-

buckling curve and q 2 and qmin both fell on this part, so that

q 2 = min* In the shallower shells q 2 was sometimes quite different

from q min The upper sketch in Fig. 10 is for such a shallow shell.

Not all of the important pressures -- qcr q 2, q un' and qmin --

depended solely on A , although this shape parameter was dominant in

most cases. From the plot of P versus X in Fig. 13a it can be seencr

that Pcr = -C/qT was essentlally independent of A and there was enough

spread in the data to obscure any minor trends. There is just a slight

tendency for P to decrease with increasing X . q. and qun seemed tocr

be related more closely to A . as evidenced by the trends seen in

Fig. 13. In fact, q2 and qun were replotted versus o( and versus a/h,

but much better correlation was found in the plots with A as abscissa.

Since many analysts have predicted a negative value for qmin (which

e 4 uals q 2 for large A ), it might be expected that q 2 would 9t least

tend to zero as A increases. Extrapolation is risky with such scattered

results but the trend seems to indicate that the curve of q 2 would

become asymptotic to zero but not reach a negative value.

The value of qmin (from constant volume tests) seemed to be

related to sh-ll height instead of to ? . This relationship was

indicated by the differences in behavior between shells 8 and 14.

These two have about the same value of A , but the load-displacement

curves associated with them are quite different. In Fig. 10 it is seen

that after buckling, the pressure continued to decrease as the deflection

increased. Thus qmin was much less than q 2 . But v-.th shell 14, the
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(,urve started up again immediately after buckling so that q2 = qmin'

Probably qmin should be plotted with 0( as th,. abscissa for good

correlation. Notwithstanding what has just been said, it appeared from

Fig- 9b that P - P Is probably a function of . The same plot
cr min

was attempted with P - P 2 and the scatter was worse in the lowcr

pc;rtion which determines the relationship. However, the conclusion

that P - P is a functionof X may have been due to a fortuitousCr mln

sca'ter in values of P
cr

- Buckling Process -

The entire load-displacement curve varies a great deal depending

on the value of the parameter X and on the shell depth. For the very

shallow shells (small k) the curve became extremely nonlinear before

buckling and was essentially horizontal at the time of buckling. A

curve for a faLirly shallow shell is shown in the upper sketch of Fig. 10.

Buckling then occurred by a gradual decrease in the pressure maintained

by the shell, The pressure after buckling was only a few percent below

thr maxi;.',um or buckling pressure of the shell. For the case of large

2. tne situation was entirely different. Here the load-displacement

cir.e was t-ssentially linear up to the point of buckling, Buckling was

extremelx sudden, and wichout warning. The post-buckling pressure was

about 1/4 to 1/6 of the maximum. A curve for a deep shell is also

,Lhowr in Fig 10.
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In all cases buckling was accompanied by the formation of one

buckle or dimple (see Fig. 5). The buckle under water pressure was

smooth, not jagged as in the constant pressure tests of Kloppel and

(20)o
Jungbluth The total central angle of the buckle is about 70 for

all X. Actually the size of the buckle is a peculiarity of the constant

volume test and not of the buckling process or of the shell. When

further volume was withdrawn after the occurrence o! buckling, the size

of the buckle increased. When the buckle was at maximum size, it

extended over the entire shell. When still more volume was taken out

after the buckle reached maximum size, the pressure taken by the shell

began to increase. If volume was then forced back into the shell, the

buckle decreased until its central angle was about 20 or 30 before

snapping back through.

The buckle could occur at any location in the shell. However,

if the shell was not removed from the cylinders between tests (no

change in test conditions), then the buckle occurred again in the

same position (except in test series 35b). But, under changed boundary

conditions, as when the shell was unclamped and replaced in the test

apparatus, it was not possible to predict the neu location of the

buckle.

For identification purposes, four buckle positions were chosen:

near the edge, midway between the center and edge, near the center,

and center. By correlating buckle positions with buckling loads for

the shells, it was found that edge buckles were usually associated
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with low loads, center buckles with high loads, and the other two have

intermediate buckling loads. This correlation sems reasonable from

the following viewpoint. In any given shell there will be some imper-

fections and some moments ind~uced at the boundary by the clafflpihg rings.

Ii the effect of the imperfection dominates, the same load should be

obtained in all tests, end the buckle should be formed in the vicinity

of the imperfection. However, if the edge moments are dominant, the

buckle will be formed near the edge and a lower load must be found,

Since the imperfections will not be changed from test to test, the

effect of any other influence must be either none or such as to de-

crease the buckling load. However, .n this reasoning a very simple

relation betwien imperfection and buckling load was assumed.

Unbuckling was accomplished by forcing water back under the shell.

For the deeper shells an unbuckling action occurred much like the buck-

ling. At some point there was a sudden increase in the pressure main-

ta:ned by the shell. This occurred as the buckle snapped back through.

Then the shell was back on the initial portion of the load-displacement

curve and further volume change caused a decrease in the pressure in a

linear manner. Jist prior to unbuckling, it was observed that the

dimple was vibrating at three or four cycles per second. No such

motion was noticed at any other time during the loading or unloading

process.

Various investigators have determined the minimum value of

at which buckling occurs. Below this value the load deflection curve

is a single-valued function of pressure. Kaplan and Fung found
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S= 2.1 theoretically, but %= 5.0 experimentally as the minimum for

buckling. In his analysis Weinitschke (12a) determinedAý= 3.2 as the

limiting value. In the tests of this report, one shell with X = 3.3

exhibited an inflection point but no decrease in load with increase in

deflection. Another shell with \ = 3.4 showed a slight decrease in

pressure in some tests and none in others. These tests are therefore

some verification for the theoretical value of Weinitschke.

- Effects of Imperfections -

One type of imperfection encountered in the shells was a slope

of the rim as depicted in Fig. 7. The sign convention adopted was

also shown in this figure. Some change in buckling loads might be

expected due to this slope. When the shells were clamped into the

test chambers, the rims were forced flat, thus inducing moments

along the shell edge and, for large slopes, the shell height was

even altered. Fig. 7 was plotted using the simple assumption that

a positive slope would tend to ixrrease the buckling load and a

negative slope would have the opposite efPect. However no trends

at all are indicated in the figure.

Budiansky made an observation concerning the interaction of

mode shapes and boundary conditions which may be used here. During

loading a trough forms about the shell edge as a transition from the

clamped boundary to zhe uniform deflection which occurs over the

center of the shell. The mode shapes are also a series of troughs

and crests. and the number and position of these waves depend on the
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value of A for some values of A a trough should appear at the edge,

for others, a crest. Budiansky showed that when the mode shape produced

a trough at the boundary, reinforcement occurred with the clamping

trough and low loads were obtained at between A = 3.5 and 5.5 and

between 8 and 12. For /. between 5.5 and 8, cancellation occurred

and buckling pressure was higher. As X increases the oscillation

in the P versus X curve dies out because the conditions at the
cr

apex and edge of the shell have less mutual influence. Fig. 7 was

replotted using these ideas. For shells with L, between 3.5 and 5.5,

8 and 12, and between 16 and 25 the same sign convention was used for

the rim slope. For the other shells the signs of the slopes were

reversed. The figure which was thus produced looked no different from

Fig. 7. That no trends appeared in either figure should not be taken

as a sign that there was no ef-ect from the slope of the rim. Rather

it was an indication that the influence of slope on buckling pressure

is small and obscured by other things.

Interest in the effect of clamping a sloping rim is not actually

restricted to this set of tests. In a practical structure, edge

restraint is provided generally by other deformaule bodies which will

tend to curl the shell edge up or down in a manner similar to the above

effect

Various surface imperfections were found on the shells. Among

these blemishes were central bumps which were caused by an irregu-

larity in one of the molds and miscellaneous shallow bumps caused
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by the presence of steam under the shell during forming. In a few

shells there were very small sharp bumps caused by dust flacks present

during forming. A further imperfection was caused if the hot sheet

did not hit the mold uniformly when the vacuum was applied so that air

pockets remained. Such an imperfection was a symmetric groove at

midheight around shell 16. Shell 25 (and to a lesser extent, 24)

had a large fVat section at the apex. This seems to have reduced the

load considerably and even flattened the load-deflection curve so that

buckling occurred gradually, not suddenly.

Fig. 8 was a plot of imperfection magnitude versus the buckling

pressure, No trend was evident but again this was based on a very

simple idea about the effect of imperfections. It was not felt that

a more valuable plot could be made using the knowledge which is presently

at hand. The analysis of Chen has shown that buckling pressures may be

either increased or decreased by imperfections depending on the value

of A and on the position, size, and direction of the imperfection. This

is reasonable if one considers the fact that shell structures are usually

built with ridges, grooves, and flat spots for added rigidity and

strength. Yet in other cases grooves and flat spots would considerably

increase the danger of buckling. For a refined treatment of imperfection

effects it would be necssary to know the effect of a variety of sizes,

shapes, and positions of blemishes. Also it would be necessary to know

the mode shapes, both symm6tric and unsymmetric. Finally, it Js

postulated that the position of the imperfection with respect to troughs

in the deflected shape would have an effect on buckling pressures. Such
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complex relationships make some sort of minimum load criterion very

welcome although sumewhat improbable.

Testing offered a further possibility for imperfect conditions.

The latter can change from test to test while rim slope and surface

imperfections will not. Hence variations in buckling pressures for

a single shell are probably due to changes in test conditions. One

source of error is the accuracy of clamping the shell into the test

chambers. If the shell were placed slightly off center, the. shell

would not be held correctly and symmetrically, but in some unsymmetrical

manner. This would tend to induce unsymmetric buckling and consequently

lower loads. The variation in buckling pressure which may be attributed

to this cause is about 7% as can be computed from the data of Table 1.

During the air pressure tests, the nature of the effect of clamping

conditions was studied for one shell. It was found that the buckle could

be made to form in any part of the shell by shifting the shell around

slightly in the test chambers. Early in the testing program this

importance of clamping conditions was recognized so that great care

was exercised in this regard. In the preliminary tests when no

special precautions were taken, the reduction due to incorrect edge

conditions was as much as 50%.
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- Comparison with Other Work -

The buckling loads of this report seemed to fall in a sort of

middle range between those of Tsien and Kloppel and Jungbluth, but

are quite near the results of Kaplan and Fung, and Homewood, Brine,

and Johnson. This was some verification that the results from the

plastic material were valid.

In the History it was pointed out that if the energy criterion

of Tsien were correct, buckling loads would depend on the ambient

energy level and not be very reproducible from test to test. However,

as was mentioned, the values of P are very repeatable under unchangedcr

n-nditions. The criterion was also used to predict that buckling loads

under constant pressure would be about half those under constant volume

testing conditions. Kaplan and Fung made both types of tests and found

no indication of a difference; however, their experiments were in shallow

shells beyond the range of Tsien's criterion. The tests of this report

are evidence that the constant pressure buckling load may actually be

above the constant volume load. Such a circumstance is not explainable

etither by the energy criterien or by the usual maximum-point-on-the-

cu-ve criterion.

The main importance of this experimental work was in the repeated

testing and in the study of effects which could be investigated by

this type of testing. Since the other investigators used metal shells

which usually yielded on buckling, only one critical load was obtainable

and many questions were raised as to why the shell buckled at that
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prebsure. Some of the possible causes have been studied in this report

by using shells which buckled elastically and could be re-buckled any

number of times. Thus the importance of clamping conditions has been

pointed out and the time-dependence of buckling loads in material which

creeps was considered. It was possible to conclude that the buckling

was due to a ge.ometric instability and not to material yield or to some

local failure. Since the shells were buckled many times it was discovered

that the dimple could appear in many positions in the shell and that the

buckling loads and buckle positions were related. Finally, an unbuckling

curve was determined which may shed further light on the buckling

process.
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CHAPTER 5 ANALYTICAL STUDY

A Introduction

The main purpose of an analysis in a report on buckling is the

determination of buckling loads. However, with the large disparity

between analytical results of previous investigators and test results,

there was not much hope for finding better results for P from this

analysis. Rather, the computations were made to study the nature of

the load-displacement curves. The loading curves were plotted both

as load versus center displacement and load versus volume changz.

In addition, it was desired to know the variation of energy along

these curves in crder to assist in a consideration of Tsien'5 energy

criterion.

The technique of calculation was the energy or variational

method. Since this approach provides a series of equilibrium posi-

tions, the necessary curves could be plotted from the coordinates

(pressure and deflection) of these positions. The required equation

of total potential energy was first derived from the familiar

principle of virtual work. Nonlinear strain-displacement relations

were taken from Love (22) for use in the energy equation. Finally the

energy equation was simplified to contain only terms important for

large axisymmetric deflections of deep spherical shells with a

buckle at the apex. Most previous derivations either were restricted

to shallow shells, used different strain-displacement relations, or

were linear and not applicable to the large deflection problem.
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In orcA,.r to continue the anclysis, some estimate had to be made

of an equation for deflected shape. The usual procedure at this

point in the problem has been to propose a series of functions whicii

seemed to fit the equations mathematically. The estimate used in

this investigation was taken from observation of the actual buckling

tests. The deflected shape was assumed to be a sum of terms: one for

the uniform deflection as predicted by small deflbction theory, one

for the apparent shape of the buckle, and several others to satisfy

boundary conditions. The formula represents quite well the appearance

of the deflected shape, particularly in the post-buckling range.

The first maximum of the loid-delection curve was assumed to

be the buckling load. This maximum point was found graphically by

plotting a number of cquilibxium positions near the maximum.

The calculationB were carried out pa.rtially on the IBM 7090

computer because of the cinplexity of terms in the energy equation.

Equilibrium positions were found fox unrestricted deflection and for

deflection where the buckle increased in depth but the average de-

flection over the shell remainfd constant.
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B Derivation of Equations

In this section the well-known principle of virtual work was used

to derive the principle of minimum total potential energy. In the

application ol the latter, a functional known as the total potential

energy was calculated for use in determining equilibrium equations.

In deriving the equation for the functional, various "order of im-

portance" studies were made on the terms in the equation so that

negligible terms could be discarded.

The principle of virtual work may be stated as follows (see

K. Washizu, ref. 21): If infinitesimal virtual displacements of a

body, u, v, w, which are compatible with the prescribed boundary

conditions are imposed, then at an equilibrium position, the principle

of virtual work gives

V0mefff'crs/, VS 3 v- -t- ?Su) vs 7  4 -)

The quantizies X, Y, Z are forces on the surface acting in the

coordinate directions, and u, v, and w, are displacements in the

same directions. The strains, 6 1 1 ,P E 2 ,2 33,• E2,,e13, and 612

are derived from the displacements. Also the stresses are specified

as functions of the strains by stress-strain relations, such as

63



From the principle of virtual work Washizu has derived the

principle of minimum potential energy which may be stated as

follows: Of all the admissible u, i,, and w which satisfy the

prescribed geometric boundary conditions, the actual displacements

are given by the extremum condition of a functional 7Tdefined as

gVO/Mme (5-2)

- ff (iu t 9 -f f2ur.') S

If the first variation of Tr, the total potential energy, is taken

with respect to the displacements and strains, Eq. (5-1) is obtained.

The same minimization procedure is valid for any number of independent

displacement parameters and is not restricted to three orthogonal

c-omponents -

In the usual application of the energy method, the total

potential energy is evaluated and then varied with respect to the

displacement parameters. The first vailation provides the minimum

condition67 I

Since the displacements 6u, 6;, ', . are independent and

may be specified arbitrarily, each partial derivative must be zero

to ensure that &Tr= 0. Therefore the minimization and equilibrium

conditions are

_r e5= _ (5-3)
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If the displacement components are not independent, a slightly

modified procedure can be followed. For a two-variable problem the

usual equilibrium condition is

77r- L119jr = 0 (5-4)

dv v O

but if u and v are not independent, there is a constraint condition

in the form M(u,v) = 0. Therefore it is also true that

or

Replace this expression into (5-4) and obtain

Since 8v can now be varied arbitrarily, the equilibrium condition is

found to be

JA4J7( ,,

For convenience the total potential energy is often separated

into two parts, thus

7,= U - W, (5-5)

"where U is the strain energy and W is the work of the external forces.

The present problem may be considered as a linearly elastic

case of plane stress, that is, the stress C3 is taken as zero. Also

Kirchhoff s assumption that a lint in the shell which is normal to

the middle surface before deformation remains normal after deformation,
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will be taken. This merely requires that the shear strain will be

neglected in finding deflectiors. Further it is assumed that it is

reasonable to neglect terms which appear to be small accordfng to

some consistently applied criterion. In this problem the strain

energy takes the simple form

Vo/l'ue

and the stress-strain relations are

22
(5-7)

F+

The quantities 2 11, q'22 are dimensionless curvatures of the middle

surface in the 0 and 9 directions and C., f22 are strains of the

middle surface in those two directions.

Substitution of the relations (5-7) into Eq. (5-6) and

integration in the direction of 0 gives

(5-8)

The required strains and curvatures are taken from the nonlinear

(2-1-
strain-displacement equations of A. E. H. Love The following

procedure is outlined in Novozhilov(2 3 a) The relations are specialized
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here for the case of symmetrical deformation of spherical shells.

The strains are
•, -e, ÷ (r,, CA). w,,:

4~3 c 3 3 ~/4 6~±E,#4)a,)J(5-9)

OE3 G4 ý, I

where

( !( - Y- (A.)

Here u anl w are displacements tangential and normal to the

c c

middle surface and z is the distance outward from the middle

surface.

in order to proceed further it is necessary to find a criterion

to determine the relative importance of displacement terms so that

small terms may be discarded. Edge loads and point loads on shells

both produce sudden changes in geometry and high moments just as th.e

buckle does. From the analysis of point loadings by esne(24)an

edge loadings by Novozhilov(2b the relative importance of the

deflection terms can established. In these analyses, uc, the tangential

deflecti 'omponent, is small with respect to w , the normal component.MC clr
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In other words, i.v is of the order of u times m, where m is a number
C C

which is larger than, say, 10. Also differentiation by 0 or multiplica-

tion by coto raise the order by one step, that is, increase the magnitude

by one power of m. Therefore u cot0 and u' are of Lne order of (Uc)(m),

w' and u" are of the orderof (Uc)(m2), and w" and w'coto are of the
c c (u( 2) n c c

order of (uc)(m 3 ). These orders of magnitude apply specifically near

the apex where coto is mich greater than one and are not as applicable

at the edge of a deep shell. In this analysis it is assumed that the

highest order nonlinear terms in the strain-displacement relations are

comparable to the highest order linear terms and that all other linear

and nonlinear terms are negligible.

From Kirchhoff's assumption it follows that e 1 3 must vanish and

the plane stress assumption requires that L3 = 0. Therefore

!ý_Uc /,, ýýI 11 ( 0 (5-11)

633 =oc? e dacl~x.l I2 .," (, , , (5-12)

Let u u + R- 4
c (5-13)

w = •

where u and w are displacements of the middle surface and

and Xare linear variations of displacement through the thickness.

Substitute these values into the equations for 6 3 and &33 and
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the results are

Let eI = u' + w

e2 = ucot0 + w (5-14)

e• = W' - U

where u and w are dimensionless terms for the displacements of
U w

the middle surface, that is, u =- , w = - The primes refer toa w

differentiation with respect to 0. Then

and /÷ , (5-15)

Now return to 61, and 422. Use the substitution (5-13) and let

S/' -' .0, o'Ind :2 4+ .? Then

ti ix/ - -

2o 94er J-Irt = &r (5-16)

The results above have be,-n found by keeping only the highest order

linear and nonlinear terms as determined by the order of magnitude

analysis.
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The solution of the problem is greatly facilitated by solving

for u in terms of w so that only w remains as an independent variable.

The necessary condition is found by minimizing the total energy with

respect to u. Since u appears only in the extensional energy,

77" SU-/•,,

7~~2 2'c 3Y e5id

or 4sy'- . es (5-17)

which is an equilibrium condicior for a homogeneous case. This

may also be transformed to

w"-'*ao/gJ -.~4c~c• i-&-g)p = -t&,..& '-J,,,-"- (//,-,') ,.,- oV

The fourth term is of smaller order than the others in the

equation and may be omitted. The rest can be arranged for in-

tegration as follows:

( (r2 (5-1s)
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Integration once gives

(/,'~9f~~#Ar- ~(5-19)

Here it is well to notice that there is a simple expression for the

sum of the extensional strain

(5-20)

Notice that if v is a un-form expansion this equation is incorrect

since 4, - •,22 --n = "r lor &r = constan7t.

Another integration of (5-18) gives

2s9  (5-21)

Imposition of the boundary conditions u = 0 at 0 - 0,(

serves to specify A and B.
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Since the sum of extensional strain, 9 11 + F 2, (see 5-20)

is easy to calculate but the product, 11••.2 is not, the strain

energy formula will be modified, using Eq. (5-7). The extensional

energy is

The last integral can be integrated partially using equation

(5-17).

The first term is zero at the lower limit and only u' is nonzero

at the upper limit. Therefore the integral of the strain product

becomes:

6I -6hý 2 - ,/

Fh__O 1' 2 3€ •#o (( + ,,'e:) _s,•_4 d#

/-,V/, : Cos7
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The integral is of the order of 1i/m2 times the evaluated term and can

therefore be integrated approximately or neglected.

The formula for bending energy can also be transformed by partial

integration to a simpler form.

gk 77 / 7 O
,.~2 -37-)

The second term in Ub is integrable since

rbJ m-"r'coS9'a'# ffa'(•'2cos€ d,'

/ 2

The evaluated term is identically zero and the integral is of the

order of 1/m 2 with respect to the first term in U . The nonlinear

terms in the bending energy are found to be second order with respect

to the comparable extensional energy terms and are therefore omitted.

The work done can be considered as a scalar product of force and

distance, thus

Wco ( -r cXs 7 a CoZ)&S1 (5-22)

where cos X.and cos Z are cosines of the angles between the surface

normal and the 0 and Z coordinate directions. Here

C-0SK X

cosZ /(5-23)
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Therefore

or approximately

W =27- -2TrsfJ6vs //ý7/ a$0 (5-24)

The energy equation can now be written in the form:

where the dimensionless quantities are

L ,- 2s,,~d

C74

u - / z(5-26)

AA

74



C Deflected Shape

The deflected shape to be introduced into the equation for the

energy functional is probably the main difference between this analysis

and previous work. In the past the deflection was taken in a series

with as many as 200 unknown coefficients. With fewer terms the shape

was too restrcted and poor results were obtained. Also the number

of terms increased rapidly as 'ý increased. For a deep shell (large X )

a power series might prove hopeless.

In this analysis a deflected shape was chosen which seemed to fit

the appearance of the shell surface during loading. Up to buckling

the deflection seemed to be uniform over most of the shell (this was

observed under air pressure where loading could be applied rapidly so

that deflection was visible). At buckling a dimple formed which

was a shallow, bowl-like, circular depression. The edges seemed to

be fairly well defined due to the reflection of light from the

region of sharp curvature at the rim of the depression. Therefore it

was possible to speak of a diameter or size of the buckle. This

sharpness of curvature indicates the presence of large and rapid

variations in shape, shear, slope and moment in limited areas of the

surface. Such regions of high derivatives are difficult to depict

analytically and require a long series of terms to make an adequate

fit. In the.-shell-the buckle appeared as almost a separate region

in an otherwise unchanged spherical surface. No wonder many of the

first investigators analyzed the buckle region as a separate entity.
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The buckles seen in the tests were symmetrical only for the shallow

shells with one exception. However the differences in buckle position

apparently caused fairly minor changes in P cr. Therefore if buckling

loads for axisymmetric buckles were determined, the load associated with

unsymmetric buckles should be just 5% or i0% lower. The axisymmetric

case only is considered here because it is simpler mathematically and

should depict adequately the nature of the loading curve.

Instead of trying to depict the whole shape of the shell surface

as one term or one series of terms, the shape was divided naturally

into its two components: the uniform deflection and the buckle de-

pression. No mode shapes were considered since none were seen on the

shells. These small undulations in the surface were probably just too

small to be detected visually without special equipment. Omitting

modal deformations from the assumed deflected shape probably led to

a somewhat higher buckling load.

The equation for deflection which was chosen was as follows:

ar=--- - co

- tA7, (I ',1 1, cos 6o -

(5-27)

I'V',(',S/,7 460e it Cos c )

-e -PhK slý h<x C- '60 ('cO- E# -Csck)

Each term here had a specific purpose. The first term, wo, is a

uniform expansion and wo[sin C(•- )+CoS C a -AoY provides for the
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clamped edge condition. Both of these deflection terms are known from

small 6•lec~i$on or linear theory. The third term, w1,(sn b0 + cos bo)e-•O

describes the shape of the dimple which appears at buckling. For con-

venience these first three terms were plotted in Fig. 4B in various ways.

Notice that the third term has no siope at 0 = 0, and that it goes to

zero at bo = 2.35 radians. For larger values of b-, the contribution

of this term becomes very small. 1/b is a measure of buckle extent

since the diameter of the dimple is about 4.7a/b.

The succeeding two terms were needed to satisfy boundary condi+ions

for w and w'. With the clamped edge it was necessary that

w = w'= 0 at 0 = 0 , the edge

w'= 0 at 0 = 0, the apex

and w had to be finite at 0 = 0. These boundary conditions are not

satisfied exactly but approximately, since the edge correction has

both a deflection and slope at the apex, The leflection in the cen-

ter of the buckle is

wo Wo(sin co + cos C~k )e-cu w, + w, (sin bo(+ cos b()e-bK

+ bwsin ba e sino

but for most purposes it was adequate to assume that the buckle depth

at the apex was

- Wo + WI

(the terms were written with different signs, but in actuality both

are inward deflections and therefore add since wo is always negative.)
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In general both c and b will be large, that is, between 10 and

100. This means that the number of important terms in the series

expansion for w would be extremely large and this seems to be the

case for deeper shells. The factor b is the basis for all order of

magnitude analyses and exactly fits the scheme earlier specified.

Near 0 = 0, it is assumed that b" is of the order of unity. This

deflection equation is reasonable for shells of a certain depth

only, where the edge and buckle terms do not significantly overlap

and is not necessarily applicable to very shallow shells. For the

deeper shells it is possible to let e equal zero in the evaluations

-bc•
of theintegrals. e cannot be neglected since it increases on

differentiation with respect to b.

The energy equation can be written in the following general

form:

(5-28)

The E's contain exponential and trigonometric functions of b and c.

Equilibrium equations are now found by calculating
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The problem is simplified by using

= ___ C= (5-29)

which can be obtained by evaluating 0 and 0- 0, neglecting

terms in w,. This merely means that w0 is assumed to be the correct

linear deflection. But if this is so then the terms with coefficients

El. and E01 must also cancel, as Friedrichs has pointed out, and could

be omitted from the energy and equilibrium equations. That this;was.

the correct procedure can be demonstrated using a simple potential

energy formula which contains both a linear and nonlinear term.

Let (5-30)

Scan be considered linear since its derivative is linear. This

special definition applies since 7ris actually the integral of the

physical quantities which are linear or nonlinear. Also the deflection,

S, is broken into a linear term which is valid near 0 = 0, and a non-

linear term, S.

Then /77 , 9/2-

or 777o 44 E2 go s 9'2 , 3sg g
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Notice that if wo = 0 w1 W l, 7_-= 147, then Eq.(5-31) is very

similar to Eq. (5-28). The former is much simpler, however, and can

be studied to determine the importance of the terms. The general

solution can be found from

,I " "

In this case there is a maximum or buckling pressure which occurs

at _~ e

or & and P Max

Now the same result could be found using S--# S/ When Eq. (5-31)

is differentiated with respect to Si. the following is obtained:

d 7r. ~8 = , f 3~ 2  (5-32)

and P occurs at - -• (5-33)

max 0(-3

or go and

which is the result obtained before for the deflection at buckling.

Notice that in ?7rthe terms which contribute to (5-33) are only

-342 90 1, and -42 8 . Since & is the linear solution,

so = P/k 1 . Using this result and the deflection at maximum P in

Eq. (5-32) gives

In finding Pmax' four terms in ffo are needed. Besides the

three which serve to determine the critical deflection, -3k2 goS ý

is required. If the latter is omitted, the value of P is twice
max
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the correct value. The interesting result is therefore that the

linear solution, go, must be included in two nonlinear terms, So',
and 9.9,2 in order to give the correct results. In passing it should

be noted that the terms in 77 containing S0 , 80 S 1, P 9 0, and

P 1 cancelled out since So is the linear solution.

When the results of the preceding study were applied to the terms

in /, Eq. (5-28), it was found that the terms with coefficients

E 2 0 , Ell, E1 o, and E0 1 could be dropped but that all the others had

to be kept, Finally the energy equation took the form

77d /we W /V -'.' /a ,~ (A- 4t 03,q'6FO 5 < (5-34)

and the equilibrium conditions are

d -o and 0 (5-35)
2 2 3n =- 0

or E2 1wO + 2E. 2 wow, + 2Eo 2 w1 + 3Eow( + 4Eo4 w( = 0 (5-36)

and D2 w2owl + D1 2 wow2 + D0 2w2 + D0 3w3 + Do4 w4 = 0 (5-37)

where the D's atc,- derivatives with respect to b of the E's. The

E's found in Eq. (5-34) are given in Appendix C.
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D Solution

The procedure for solution of the problem is to satisfy the two

equations (5-36) and (5-37) simultaneously for w, and b at various

values of Q, the applied pressure parameter. Each set of values for

Q, w1 , and b which satisfy the equations define an equilibrium posi-

tion for the shell. If a series of quantities for Q and w, from

such positions are plotted, a loading curve is obtained. In this

report it was found convenient to plot -wo versus -wo + wi since

-wo is proportional to pressure and -w. + w, is the central deflection.

The first attempt at a solution was made with a somewhat less
Ti' Snc e-boc

complete formula for 1T. Since e is rather small for large b,

all terms with an exponential were excluded. This meant that all

trig6nometric functions were also omitted since they occur only in

conjunction with the exponential. Hence the E's contained only

powers of b, making the equations rather easy to solve. Terms con-

taining e-b° were also neglected in the expression for w, Eq. (5-27).

And finally E2 1 WOw1 was neglected because it did not seem reasonable

for the linear solution, wo, to be of importance in nonlinear terms.

The two equilibrium equations, 0 and - 0, were solved for a

number of values of Q. Eauilibrium positions were obtained first far

into the post-buckling range, and the solution was then continued,

working backwards towards buckling. The post-buckling part of the

curve was about right. However, at a point near what should have

been the maximum point of the curve, the pressure rose sharply
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towards infinity and the value of b became imaginary. Although

this solutton attempt failed, it gave some useful information

for assistance on the next try. It was found that b would have a

value near that of c and that the value of b rose to a maximum

near P Thus a curve of b versus deflection should be similar 'o
cr

a load-deflection curve.

The difficulties experienced in the first try could be traced

-b• -bo(
mainly to the omission of all terms containing e . True, e

was much smaller than l/b, with which it was usually compared,

especially if b were approximately equal to c. However, when the

derivatives of both terms were taken, the situation was different.

Then the comparison was between be-b4 and 1/b 2 and the two terms are

nearly equal for b = 36,

In the second attempt at a solhtion, the procedure outlined

in most of this chapter was used. The nonlinear terns E21wOw1 and

2 -bC -2bc -3bx
E1 2woW1 were retained, all quantities containing e , e , e

and e 4ba were retained, and E2 0 w2, E 1 1wowj, Elo,ov and EojQw1 were

cancelled out. The remaining E's were very complicated functions

of b as can be seen from the formulas in Appendix C. The normal

procedure for the solution of Eq. (5-36, 5-37) is to specify Q

and solve for wi and b. However it is also possible to specify

b and solve for Q and w, if that is more convenient.

In the present case computations were made by evaluating the

E's and D's at certain values of b. b was successively assigned
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values for each percent of c, that is, b(i) = 0.01(i)c where i was

an index running from 30 to 120. This range of b was suggested by

the results of the first attempt at solution and the interval was

chosen to give reasonable results for the derivatives. The latter

were computed by a four point central difference formula from

reference (25). For example

and here the range of 1 was narrowed to 32 to 118.

The computations ol the E's and D's were programmed in Fortran

language for use on the IBM 7090 at M.I.T. The program was written

in essentially the order given for the calculations in Appendix C.

When these evaluations had been made, the simultaneous equations

of equilibrium, (5-36, 5-37) were ready for solution. Since each set

of these equations were for a fixed value of b, wo and w1 (or Q and wj)

were treated as unknowns. The remaining calculations were made by

hand. The method used -,as to try to solve a few sets of equations

for b near 0.9 c. When a solution of any set was obtained then a

set for a nearby value of b was attempted. To aid in solution, the

two equilibrium equations were rewritten as

4 __ 
(5-38)
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(539

Then the equations were solved by relaxation. That is, values for

wo and wi were estimated and placed in (5-38) and a new value for

wo was found. Then with the estimate for w, and the new value for

wo, wi was evaluated using the second equation. The process was

repeated until a set of solutions was found or until it became

apparent that the values of one or both of the unknowns would lie

outside the range of interest. When successive values of wo and w,

agreed to three figures, the equations were cosidered solved. The

values of 4, and wi obt.ained were plotted immediately to assist in

estimating the next solutions.

For the graphs shown in Fig. 16, the plot was made of -wo versus

-wo + w, and then the ordinate scale was changed to make a pressure

versus center deflection curve. The pressure versus volume change

curves were made by plotting -w0 versus L as given by Eq. (5-26).

The preceding calculations were all for "free" deflectia s. that

is w, and b were varied independently to minimize the total poten-

tial energy. However, when an experiment was run with volume control,

this freedom was not present. To duplicate this case analytically,

a restriction was applied to w, and b so that the volume L could be

held constant while deflection and pressure changed. The method
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used here was outlined in thediscussion following Eq. (5-4).

M(uv) = 0, the restraint condition, was replaced by L - Lo = 0,

where Lo is the value of L at some designated point. For instance,

the value of L at P was set equal to L0. Then with the constraint

condition, equilibrium positions shown in Fig. 15 duplicated tile

curve of an actual shell undergoing constant volume testing (see

Fig. 10).

For both free and volume control testing it was possible to es-

tablish curves of energy versus deflection. These were simply made

by using the values w. , b, and Q which were already kmown at specffic

points and evaluating ir from Eq. (5-28).

During the solution of tdhe equations, it was found that the terms

with E1 2 and E2 1 were very important in the initial portion of the

loading curve up to buckling. Also in this initial portion the terms

with E03 and E0 4 were not required and E., was contributing a very

small amount even at buckling. The situation was reversed for equili-

bri•tm positions in the large deflection range. The terms with E0 .

and R.4 were dominant, and E12 and E2. were essentially negligible.

The linear term. X. was of importance throughout the range of para-

meters.

One effect of the unimportance of E2 w0w, and 112w0wi for large

defiections was the poor definitien of w., and, therefore, pressure.

Thus when w1 was large, one equation was solved for w1 almost in-

dependently of w.. Thus the usual interaction of simultaneous equa-

tions was not .resent and the values of pressure were somewhat
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doubtful. Also for large deflections the potential energy was not well

defined since it was a small difference between large quantities. Since

the term E0 4wI was the largest energy term as w, became greater than,

say, 0.01, it seemed apparent that terms in wl, wf, etc. would be of

importance.
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E Analytical Results

A detailed analysis as outlined in the Solution Section was

completed only for a configuration like that of experimental shell

number 23. rig. 14 was plotted from the analysis of "free" deflection,

that is, with both w, and b as independent parameters. The calculations

were terminated in the post-buckling range when it seemed that the

pressure was no longer adequately defined. Fig. 15 was for the same

configuration, but for a case of volume control. Again the calculations

were terminated at a point in the large deflection range.

A number of analyses were made for the "free" deflection case

and the resulting load-deflection curves are plotted in Fig. 16.

(The buckl--ig pressures for these analyses were listed in Appendix D).

From this figure it can be seen that the buckling loads were much

too high, averaging about 1.3 times the linear buckling load. There

is some variation between the values of the peak pressures and there

is even a difference for the two cases with equal X . The latter

circumstance points up the-fact that 7,was not the only parameter

needed to specify shape; cý was also required in the analysis. This

is of course due to the use of c sin 0( , sin cot and c/b sin b cK

which would all be designated as ccý or ýIW in the shallow shell

analysis. Hence it is quite possible that A is not the only impor-

tant parameter for deep shell buckling, but some depth measure such

as cA or H is needed.

88



Since the computed buckling loads were much above experimental

results and even above the calcu'ated buckling pressures of Budiansky,

it was apparent that the delected shape was too restricted. Not only

was the only form of deflection a central dimple, but no variations

were possible for the mode shapes.

The pressure-volume change curves of Fig. 14 and 15 show that

the initial portion of the loading curve should be linear, at least

for large 2. This was indeed the case in the experimental work

(see Fig. iU).

There was some difficulty in finding the proper range of b for

each shell. As may be seen in Appendix D, the values of b for the

peak of the curve varied in no orderly fashion. Further it was

found that b varied rapidly near buckling for some cases and very

slowly for others. At least the values of b which were of interest

were always near 90% of c. In all cases the value of b increased

as the loading proceeded, reached a maximum value early in the post-

buckling range and then decreased. Thus most of the sets of equations

had two sets of solutions, one for small deflection and the other for

large.

The difficulties encountered in finding equilibrium positions at

large deflections have already been discussed in the Solution Section.

Evidently more nonlinear terms are required in the equation for 77".

This would mean constructing a more appropriate order of magnitude

criterion than usej herein, Then strain-displacement relations could

be simplified '4slng the new criterion. Probably the equations of
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Love used in this report should be reviewed to determine if they are

';alid for very large deflections.

Some of the added problems just described may be avoided or sim-

plified if the loading problem is divided into two parts: the buckling

problem and the large deflection problem. A; least for the buckling

problem, the present order of magnitude criterion and strain-displace-

ment relatiQns are quite adequate.

The deflected shape used in this analysis is not recommended

for a future attempt. A reasonable formula for deflection should

satisfy all boundary conditions, conform to the known and expected

mode shapes, have as few terms as possible per parameter, and be

reasonably integrable.
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CHAPTER 6 SUMMARY AND CONCLUJSIONS

In the experimental portion of this study, thirty nine plastic

spherical shell segments were tested under external pressure. Most

of the tests were made with displacement control so that buckling

occurred without a change in average displacement. A few tests were

also made with pressure control since the latter situation best

approximates a practical case. In this gcoup of shells, the shell

shape parameter, X , varied from 3.5 to 25. The test procedures used

in the experiments were listed in some detail because of the important

effect of creep and time on the buckling loads.

All the shells were buckled a number of times and the buckling

loads were found to be repeatable under unchanged conditions.

With the tests under displacement control a measure of deflec-

tion was known at each stage of loading. Hence a load versus deflec-

tion curve was plotted in some cases. Important points on this curve,

were the buckling pressure, pressure to which the shell jumped at

buckling, pressure at unbuckling and the minimum pressure on the

curve. The critical pressures were found to fall in a fairly narrow

range in the midst of test results of other investigators, the results

for constant pressure tests being slightly above those with volume

control. The critical pressures exhibited a slight downward trend

with increase in A and the minimum pressure was evidently a function

of shell depth instead of A The other two important pressures were

definitely functions of ;.
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A discussion of the occurrence of buckling is presented in Section

4D, describing the variations of buckle sizes and positions, the

shape of the loading curves, and the changes in the buckling phenomenon

with changes in 2ý.

The effect of imperfections in the shell were investigated, but

no relationship between imperfection and critical load was found.

The accuracy with which the shell was clamped in the test chambers

had a noticeable effect on the critical load. Since the plastic of

the shells exhibited some creep, this also changed the critical

loads. A simple analysis of the creep effect was made and used to

cancel out this effect.

The energy criterion of Tsien was reviewed and compared with

experimental results. However, Tsien predicted buckling loads under

constant pressure would be about half those under constant volume

(displacement control) and this was not verified by the experiments.

The tests have served as an indication of the value of plastic

as a testing material and of the importance of repeatable testing of

the same specimen.

A variational or energy method was used in the analytical study.

The equation for total potential energy for symmetric buckling in

deep spherical shells was derived. A formula for deflected shape

was chosun based on the shape seen in the experimental work. The

equilibrium equations derived from 'he energy equation were found

to be adequate in the range of deflection near buckling but not so
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good for large deflections. For an analysis far into the post-buckling

range a new order of magnitude analysis and new strain-displacement

relations would probably be needed.

The equilibrium equations were solved to find equilibrium positions

and thence load-deflection curves. In two cases a plot of energy versus

deflection was also made. Analyses were made for five shells with

from 14 to 25. Since these were considered deep shells, it was found

necessary to specify both X and o(. The curves were quite similar to

those plotted during the experimental study but ctitical loads were

3 or 4 times too high. That the analytical buckling pressures are even

above those of other investigators is probably due to a restricted

form for deflected shape which failed to account for small undulations

which occur in the surfacz prior to buckling.

There is a large spread between theoretical and experimental

buckling pressures and even quite a range between test results. This

scatter is probably due to clamping conditions during testing (5%

or 10% but possibly a much larger effect), imperfections in the shell

(unknown effect), and nonaxisymmetry of buckling. The tests indicate

that the latter effect may be rather minor.
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CHAPTER 7 SUGGESTIONS FOR FURTFER STUDY

This investigation has developed many questions and problems

which still need a solution Among these are the following topics

for study:

1. Unsymmetric modes of deformation should be considered in

determining buckling loads. Techniques with a reasonable chance of

success in the project are those of Weinitscke, Thurston, Budiansky,

and Caseman.

2. The correlation between edge restraint and buckling load

should be studied. In practical situations, the edge support will

not be clamped or pinned but merely restrained to some degree.

3. A general theory for the effect of imperfections on shell

buckling is much needed. First the mode shapes for any X must be

known and then the interaction of imperfection size and position

and modal deformations could be considered.

4. The equations of equilibrium should be derived and a study

made of the importance of terms for any amount of deformation. Many

such studies have been made but usually a priori and not based on

any conrete results.

5. It would be useful to make some experiments with as little

error caused by testing conditions as possible and true constant

pressore tests should be performed as well as constant volume tests.

To reduce the effects of minor imperfections, the shells should be

thick and the shells should be clamped between rings with a spherical
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surface so that no rim would be required.

6. The effect of rate of change of load over the surface should

be considered. So far uniform loads have been most popular, but wind

loads and point loads also produce buckling.
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APPENDIX A EXPERIMENTAL RESULTS

The data for Table 1 were taken from tests of spherical plastic

shells performed i;- accordance with the proceoures described in the

Experimental Chapter of this report. Shells to be tested were clamped

into the testing chamber and buckled a series of times. Then the chamber

was opened and the shell was reclamped. With the slightly altered

boundary conditions, a new series of tests was run. The main tests were

made under water pressure to maintain control of the displacement. The

few tests made under air pressure were so designated. When the same

series letter was applied to both water and air pressure tests, it meant

that both sets of tests were run without changing the clamping conditions.

The buckling loads were normalized using Eq. (4-4) to make the

values of P correspond to El. Since the results for each series werecr

nearly identical and corresponded to one set of conditions, average

values of (P cr)N P2, and P were recorded for each series.

The buckle and imperfection positions are given as:

c center of shell

n near center

m midway between center and edge

e next to edge of shell

Following the values of q , V X a/h, and c)( for each shell there is a

brief description of observed surfac- imperfections. If the edge strip

or rim curled up (with the shell convex up) after forming, a positive

slope was indicated. An estimate of the height of bumps and their

location on the shell was made: This information follows the slope.
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In the table E, = 498,000 psi and g; the rreep rcofficient, is

0.011.
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Table 1 - Buckling Loads

Series (Pcr)N P2 Pun Buckle Position

Shell #1 0,

\q= .237 psi, - = 9.25, R/h = 1635, • = 7.400,
slope = -. 006, imp. = .015", at c)

a .319 .175 .251 n
b .296 .160 .240 n
c .295 .164 .237 n
ave .303 .167 .243

Shell #2 (qT ' .272 psi, X.= 9.20, a/h = 1525, 9 = 7.62'slope = -. 06, imp. = none)

a .265 .256 .256 n
b .253 .243 .246 n

c .240 .226 .229 n
ave .253 .242 .244

Shell (q = .670 psi, ?. = 12.3, a/h = 972, e = 12.750
slope -. 03, imp. = none)

a .400 .167 .261 m
b .390 .156 .264 m

ave .395 .161 .261
d(air) .368 ..--

Shell #4 (q 78? psi, > = 4.67, a/h = 898, o = 4.110

slope = /.02, imp. = none)
a .373 .363 c
b .359 --.. c

c .348 .342 -- c
ave .360 .352 --

SI1I #6 (qT = .494 psi, ;A = 3,43, a/h = 1135, o = 3.290

slope = /.04, imp. = none)

a .610 ....

b .698 -- . c
c .556 .545 .545 c
ave .588 .545 .545
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Shell #7 (q = 2.275 psi, k = 4.92. a/h = 527, w = 6.92'
T Slope T' v-i, A ifip. = 01" at i

a .352 -- -- m
b .376 .367 -- n
c .353 .345 -- e
ave .360 .356 --

Shell #8 (qT = 2.375 psi, X = 5.15, a/h = 516, X = 7.320slope = -. 015, imp. = .0004" at m)

a .313 .307 -- n
b .315 --.. n
c .294 .290 -- n
ave .307 .298 --

Shell #9 (q = 1.320 psi, ? = 7.32, a/h = 692, o = 9.050slope = none, imp. at m)

a .447 .216 .375 n
b .475 .215 .380 n
c .491 .199 .371 n
ave .471 .210 .375

Shell #10 T = 1.400, .= 7.32, a/h = 672, -<= 9.190
slope = -. 003, imp. none)

a .449 .229 .381 n
b 442 .217 .372 m
ave .445 .223 .376

Shell #11 (qT = 1.435, ;= 7.25, a/h = 662, ce = 9.10'
slope = -. 003, imp. = .001" in symmetric rings)

a .447 .205 .366 m
b .436 .201 .358 m
ave .442 .203 .362

Shell #12 (qT = 1.350, X\= 7.47, a/h = 684, o = 9.24'
no slope, imp. none)

a .452 ,211 .355 --
b .466 .211 .371 --
ave .459 .211 .363

Shell #13 q T = 1.352, R = 7.34, a/h = 693, o = 9.080
no slope, central hollow)

a .456 .213 .388 --
b .459 .210 .381 --

ave .458 .212 .385
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Shell #14 (q T = .189 psi, >= 5.2, a/h = 1735, c9 = 4.030
slope = /.02, imp. = .01" at m, 1" dia. bump)

a .428 .333 .404 c
c .485 .315 -- m

c .472 .338 .432 m
ave .462 .329 .418

Shell #15 (qT = .209 psi, N.= 5.1, a/h = 1740, oe= 3.94'
slope = 9.02, point imp.)

a .544 .377 .467 n
b .515 .396 .462 m
c .494 .323 .428 m
ave .518 .365 .452

Shell #16 (qT = .663 psi, 7-= 7.03, a/h = 977, 0 = 7.270

no slope, imp. = .023" at m in symmetric ring)
a .425 .269 .362 e
b .468 .263 .381 n
c .460 .260 .381 n
ave .451 .264 .375

Shell #17 (T = .629 psi, X = 6.87, a/h = 1000, c = 7.020
no slope, point imperfection at c)

a .493 .238 .388 n
b .496 .240 .372 m

c .480 .240 .387 m
ave .490 .239 .382

Shell #18 (qT = .638 psi, ;= 6.86, a/h = 995, c = 7.020
no slope, imp. = .01" at e, various bumps)

a .535 .253 .417 n
b .500 .238 .402 n

c .493 .229 .389 n
ave .509 .240 .403

Shell #19 (qT = .518 psi, 2= 5.76, a/h = 1105, o( = 6.L70
slope = 9.03, hollow at c)

a .447 .272 .394 m
b .515 .269 .405 m
c .490 .292 .417 m
ave .484 .278 .405

Shell #20 (qT = .522 psi, X= 3.31, a/h = 1100, = 3.320
slope = /0.4, imp. = .01" at n)

a .549 .549 -- C
b .571 .571 -- c
ave .560 .560
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Shell #21 (q .582 psi; 192., a/h - in , v = °

no slope, imp. = .013" at m)
a .514 .155 .302 n
b .512 .154 .296 m
c .533 .187 .296 -

ave .520 .165 .298

Shell #22 (qT = 1.620 psi, X = 16.1, a/h = 625, o4= 21.30

slope = -. 015, imp. .01" at c)
a .325 .148 .230 n
b .317 .147 .226 n
c .330 .153 .225 n
ave .324 .149 .227

Shell #23 (qT = 1.535 psi, N= 16.1, a/h = 642, c,(= 20.90
no slope, imp. = .01" at c)

a .459 .135 .236 n
b .463 .143 .235 n
c .460 .142 .2,-13 n
ave .461 .140 .238

Shell #24 (q = .495 psi, %> = 9.85, a/h = 1130, cQ = 9.480
slope=-.O15, imp.=.02" at e)

a .525 .184 .270 c
b .472 .187 .338 m
c .492 .187 .350 n
ave .496 .186 .319

Shell #25 (qT = .481 psi, \N = 9.9u, a/h = 1145, o' = 9.480
no slope, hollow at c of unknown magnitude)

a .259 .234 .238 c
b .313 .271 .296 c
ave .286 .252 .267

Shell #26 (qT = .221 psi, A = 11.6, a/h = 1695, cX = 9.10'

no slope, imp. = .006" at m)
a .328 .187 .271 c
b .291 .157 .174 c
ave .309 .172 .222

Shell #27 (q= .228 psi, \k 11. 7, a/h = 1670, 0( = 9.240
no slope, imp. = .003" at e)

a .421 .228 .340 e
b .446 .205 .350 e

c .404 .169 .314 e
ave .424 .201 .335
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Shell #28 (q .233 psi, ,=11.8, a/h = 1645; o' = 9.420
no slope, Pip.- .003" at e)a .412 .162 .262 e

.352 .160 .268 ec .474 .219 .369 eave .413 .180 .300

Shell #29 q .232 psi, 2 = 15.2, a/h = 1650, o< 12.20
no slope, imp. = .OOS" at e)a .448 .150 .247 mb .433 .148 .239 mc .418 .146 .238 mave .433 .148 .241

Shell 30 (q = .223 psi, = 15.7, a/h = 1680, 0ý= 12.40no slope, imp. at c, bump)
a .483 .143 .246 mb .518 .104 .195 mc .454 .099 .207
ave .485 .115 .216

Shell #31 = .606 psi, %,= 20.5, a/h = 1020, Co = 21.10no slope, imp. = .02" at c, rise)a' .366 .085 -- na .246 .131 .174 e
c .390 .096 .200 ed .347 .092 .182 ng .382 .104 .196 nave .346 .102 .188
a'(air) .377 --
b(air) .384 _n --
c(air) .352 

e_ --
c' (air) .392 

-- e
Shell #32 (q = .606 psi, 2= 20.6, a/h= 1020, 02 °T a/h 21.20no slope, imp. = .015" at c, rise)a .423 .092 .211 eb .427 .084 .208 ec .452 .084 .194 ea' .4CO .097 .216 nave .443 .089 .207

a(air) .452 --
b(air) .448 -e
c(air) .470 

-- e
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SheV #33 (q = 616 psi, 2 = 20.2, a/h = 1015, o = 20.90
no slope, imp. = .015" at c, rise)

a .339 .115 .192 -

b .450 .104 .203 n
ave .395 .109 .197
b(air) .432 -- -- e

Shell #34 (q - .696 psi, 2.. = 20.3, a/h = 1020, 0 = 20.90
4o slope, imp. = .02" at c, rise)

a .319 .109 .184 --

b .421 .099 .207 n
c .409 .100 .182 n
ave .383 .103 .191
b(air) .415 -- -- n
c(air) .411 .... n

Shell #35 (qT = .243 psi, 2= 25.6, a/h = 1615, o = 20.90
no slope, imp. = .02" at c, rise)

a .277 .033 .116 n
b .283 -- -- e
b .329 .107 .181 n
c .331 .105 .182 n
ave .305 .082 .160

Shell #36 (qT = .243 psi,/-% = 25.6, a/h = 1615,o( = 20.90
no slope, imp. .02" at c, rise)

a .259 .054 .135 e
b .310 .042 .141 e
c z293 .037 .124 n
ave .287 .045 .133
a(air) .315 -- -- e
b(air) .349 e

Sheli #37 (qT = .272 psi,X= 24.7, a/h= 1525, = 20.80
no slope, imp. = .02" at c, rise)

a .406 .119 .206 e
b .335 .121 .171 e
c .352 .082 .139 e
ave .373 .107 .172
a(air) .390 -- -- e

Shell #38 (q = .600 psi. ,= 12.4, a/h = 1025, C = 12.60
slope = -011, imp. at e)

a .510 .148 .262 m
b .589 .150 .274 m
c .557 .165 .300 --
ave .552 .154 .279
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Shell #39 (q = .700 psi, ?,= 12.6, a/h 950,04.= 13,30
T slope -. 006, no imp.)

a .309 .116 .168 m
"b .267 .128 .170 -

ave .288 .122 .169

Shell #40 (qT = .616 psi, X = 12.4, a/h = 1010, ,= 12.6'
no slope, no imp.)

a .425 .144 .209 e
b .436 .137 .205
c .440 .130 .197
ave .434 .137 .204
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APPENDI 1X B

Modulus and Creep Coefficient Determination

Beam Tests

Samples of the shell material, cut to 6" by li", were tested

as simple beams to determine the modulus of elasticity. The sample

numbers correspond to the shell numbers since they came from the

same sheet.

Table 2 - Modulus from Beam Tests

No. Thickness Width E1, psi No. Thickness Width El, psi

4 .0828" 1.445" 495,000 12 .0504" 1.490" 503,000

5 .0830 1-4 4 8 500,000 13 .0500 1.456 500,000

6 .0777 1.456 489,000 14 .0419 1.515 509,000

7 .0829 1.429 477,000 15 °0427 1.480 494,000

8 .0783 1.46 532,000 16 .0429 1.519 490,000

9 .0512 1.412 491,000 17 .o01 9 1.515 498,o0o

10 .0508 1.510 492,000 18 .x424 1.437 502,000

1n .0508 10477 479,000 19 .0419 1.420 524,COO

The average value of El is 498,000 psi and the standard deviation

of this value is 14%
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Tensile Tests

The telsile tests were run using SR-h strain gages and a

dead weight. The Gzges and the glue attaching them to the specimens

take a certain amount of load. To take account of the added

stiffness, the apparent modulus can be modified according to equation

E1  Eapparent(l " area

in which B describes the gage stiffness. If B and E are assumed

to be constants for the tensile specimens, a least squares formula-

tion can be used to give

91 - 514Poo psi

B - .00687

The standard deviation of the value for E1 is 1.8%.

Table 3 - Modulus from Tensile Tests

No. Thickness Width Eapparent E1 = Eapp(l- ,06 )

5 .0829 1.447 556,000 524,000 psi

6 .0789 1,457 545,000 512,000

8 .0770 1.449 539,000 506,000

9 .0512 1.414 578,000 523,000

16 .0429 1.528 556,000 498,000

17 .0428 1.462 583,O00 518,000



The adjustment for Page effect is from 6 to 11% and suggu:ts

that this tensile modulus is rather questionable.

Gages placed crosswise on some of the specimens gave a value

for Poisson's ratio of 0.41.

Creep Coefficient

The curve of strain versus time for the tensile specimens

follows the equation

fairly well in the range of interest. Denoting the strain at one

minute by 44 , and that at 10 minutes by (,o , the value of g

can be found from

C,

Ao

The tensile tests then give the values found in Table 4

Table 4 - Creep Coefficient

NO. g//1 No*.00x g

5 1.022 .00955 9 1.021 e00911

6 1.020 o00867 16 1.039 .01690

8 1.029 .01255 17 1.026 .01128

The average value of g is .0113.
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Bucm End Rotation

Since the simply supported beam used in the modaie& deter-

riination undergoes considerable deflection, the end rotation miay ba

a nonlinear function of load. To determine this relationship, let

P - load on the beam

1- length of beam br -ee s•p•r•/ Ar/

M - moment in beam

j ., )j " rotation, rotation at ends, rotation in the

linear theory

x - variable horizontal distance measured from center

s - variable distance along beam from center

a - value of s at x -"

S1X =_ j ..

T, 2 ET, ,o:f[.ffr
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In the nonlinear term let S - 9 for the

integration and for evalurtion. Using these

approximations in the equation for x gives

2Vo

Therefore £ 3

buta

Then the first nonlinear approximation is

3
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APPENDIX C ENERGY EQUATION

The energy equation is

;21 ez r JJl4• /.2 (5-34)

This equation is obtained by performing the integrations of Eq. (5-25),

rearranging, and eliminating terms which cancel with the aid of

Eq. (5-29).

If the integrals of Eq. (5-26) were evaluated exactly*, many

terms would be obtained which are as small as those neglected already.

Retaining such small terms is unreasonable and so a criterion was

set up to eliminate them.. The e~aluated energy function contains the

following types of terms:

/ ce

These two types are basically different since the exponettial is not

readily compared with 1/b and also because the exponential.term increases

on differentiation while the other decreases. Therefore the highest

order terms of each type were retained. This criterion allowed for

llberal use of approximations in evaluating U. since this whole

term is essentially of second order.

The E's of the equation will be defined below in the same

manner as they were for the Fortran statement used in their evaluation.
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APPENDIX D ANALYTICAL RESULTS

The analyses outlined in the Solution Section was performed on

five shell configurations. The results of Table 5 are for buckling

loads which were obtained. The deflection aWi the value of b at

buckling were also listed.

Table 5

p w1  -wo+w1  b/c

16.i 20.90 1.368 .000 37 .001 31 .83

16.1 15.00 1.27 .000'273 .000 73 .87

20.0 26.00 1.372 .000 413 .001 35 .97

25.0 20.90 1.31 .000 085 .000 46 .92

14.0 18.00 1.20 .000 45 .001 27 .93
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